На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Курсовик Общая характеристика и особенности двух методов решения обычных дифференциальных уравнений Эйлера первого порядка точности и Рунге-Кутта четвёртого порядка точности. Листинг программы для решения обычного дифференциального уравнения в Visual Basic.

Информация:

Тип работы: Курсовик. Предмет: Математика. Добавлен: 04.06.2010. Сдан: 2010. Уникальность по antiplagiat.ru: --.

Описание (план):


19
Сибирский государственный университет телекоммуникации и информатики
Уральский технический институт связи и информатики
Факультет телекоммуникации, информатики и управления
Кафедра организации управления связи
По курсу: “Информатика”
По теме: “Визуализация численных методов”
Написал:
Плишкин М. Ю
группа МЕ-72
Преподаватель:
Кандидат технических наук , доцент
Е.Е.Минина
г. Екатеринбург. 2010 г.
Содержание
Введение
1. Постановка задачи
1.1 Метод Эйлера
1.2 Метод Рунге - Кутта
2. Блок-схемы
3. Виды, формы
3.1 Начальная форма
3.2 Конечная форма
4. Программа для решения дифференциального уравнения в Visual Basic
Заключение
Введение
Уравнения, связывающие независимую переменную, искомую функцию и её производные называют дифференциальным уравнением. Решение дифференциального уравнения называется функция, которая при подстановке в уравнение обращает его в тождество.
Если искомая (неизвестная) функция зависит от одной переменной, то дифференциальное уравнение называется обычным; в противном случае - уравнение в частных производных, содержащие несколько независимых переменных и производные по ним, которые называются частными. В данной работе будут рассматриваться методы решения обычных дифференциальных уравнений (ОДУ).
Чтобы решить ОДУ, необходимо знать значение зависимой переменной и (или) её производные при некоторых значениях независимой переменной. Если эти дополнительные условия задаются при одном значении независимой переменной, то такая задача называется задачей с начальными условиями, или задачей Коши.
Числовое решение задачи Коши широко применяется в различных областях науки и техники, и число разработанных для него методов достаточно велико. Эти методы могут быть разделены на следующие группы.
Одношаговые методы, в которых для нахождения следующей точки на кривой y=f(x) требуется информация лишь об одном предыдущем шаге. Одношаговыми являются метод Эйлера и методы Рунге - Кутта.
Методы прогноза и коррекции (многошаговые), в которых для отыскивания следующей точки кривой y=f(x) требуется информация более чем об одной из предыдущих точек. Чтобы получить достаточно точное численное значение, часто прибегают к итерации. К числу таких методов относятся методы Милны, Адамса - Башфорта и Хемминга.
Явные методы, в которых функция Ф в выражении (1) не зависит от yn+1.
Неявные методы, в которых функция Ф зависит от yn+1.
В данной курсовой работе будут рассматриваться два одношаговых метода: метод Эйлера первого порядка точности и Рунге - Кутта четвёртого порядка точности.
1. Постановка задачи
В данной курсовой работе необходимо решить ОДУ вида y` = 4y/x с заданными начальными значениями x0=1, xk=1.4, y0=2, h=0.05. Для проверки точности результатов дано общее решение данного уравнения y=x^4с. Требуется решить уравнение двумя методами: Эйлера модифицированного и Рунге - Кутта четвёртого порядка, сравнить результаты и сделать вывод какой метод эффективнее использовать, построить графики.
Численное решение задачи Коши сводится к табулированию искомой функции.
График решения дифференциального уравнения называется интегральной кривой.
Геометрический смысл задачи:
y`=f(x,y) - тангенс угла наклона касательной к графику решения в точке (x,y) к оси OX (угловой коэффициент (в общей формуле прямой,
y=k*x+b,
обозначается как “k”)(рис 1).
Рисунок 1. Геометрический смысл задачи Коши
Существующие решения:
Если правая часть f(x,y) непрерывная в некоторой области R, определяемой неравенствами |x - x0| < a; |y - y0| > b, то существует, по меньшей мере, одно решение y=y(x), определённое в окрестности |x - x0| < h, где h > 0.
При использовании численных методов выполняется замена отрезка [x0,X] - области непрерывного изменения аргумента x множеством wh, состоящего из конечного числа точек x0<x1<...<xn=X - сеткой.
При этом xi называют узлами решётки.
Задача Коши, определённая ранее на непрерывном отрезке [x0,X], заменяется её дискретным аналогом - системой уравнений, решая которую можно последовательно найти значения y1,y2,...,yn - приближённые значения функции в узлах сетки.
1.1 Метод Эйлера
Данный метод, как сказано выше, является одношаговым. Табулирование функции происходит поочередно в каждой точке. Для расчёта значения функции в очередном узле необходимо использовать значение функции в одном предыдущем узле.
Пусть дано дифференциальное уравнение первого порядка
y`=f(x,y)
с начальным условием
y(x0)=y0.
Выберем шаг h и введём обозначения:
xi=x0+i*h и yi=y(xi), где i=0,1,2,...,
xi- узлы сетки,
yi- значение интегральной функции в узлах.
Иллюстрации к решению приведены на рисунке 2.
Проведём прямую АВ через точку (xi,yi) под углом б. При этом
tgб=f(xi,yi) (1)
В соответствии с геометрическим смыслом задачи, прямая АВ является касательной к интегральной функции. Произведём замену точки интегральной функции точкой, лежащей на касательной АВ.
Тогда
y i+1=yi+Дy (2).
Из прямоугольного треугольника АВС
tg и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.