Здесь можно найти образцы любых учебных материалов, т.е. получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ и рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


реферат Выгодский

Информация:

Тип работы: реферат. Добавлен: 04.09.2012. Сдан: 2012. Страниц: 7. Уникальность по antiplagiat.ru: < 30%

Описание (план):


1. ФИЗИОЛОГИЯ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ

Центральную нервную  систему составляют спинной и  головной мозг. Основными функциями  центральной нервной системы  являются: 1) регуляция деятельности всех тканей и органов и объединение  их в единое целое; 2) обеспечение приспособления организма к условиям внешней среды (организация адекватного поведения соответственно потребностям организма).
Управление различными функциями осуществляется и гуморальным  путем (через кровь, лимфу, тканевую жидкость), однако нервная система играет главенствующую роль. У высших животных и человека ведущим отделом центральной нервной системы является кора больших полушарий, которая управляет также наиболее сложными функциями в жизнедеятельности человека — психическими процессами (сознание, мышление, память и др.).

§ 1. Физиология нервной  клетки

Основным структурным элементом  нервной системы является нервная  клетка, или нейрон. Через нейроны  осуществляется передача информации от одного участка нервной системы  к другому, обмен информацией  между нервной системой и различными участками тела. В нейронах происходят сложнейшие процессы обработки информации. С их помощью формируются ответные реакции организма (рефлексы) на внешние и внутренние раздражения.
Нейроны разделяются  на три основных типа: афферентные, эфферентные и промежуточные нейроны. Афферентные нейроны (чувствительные, или центростремительные) передают информацию от рецепторов в центральную нервную систему. Тела этих нейронов расположены вне центральной нервной системы — в спинномозговых ганглиях и в ганглиях черепно-мозговых   нервов.
Афферентный нейрон имеет ложноуниполярную  форму, т. е. оба его отростка выходят из одного полюса клетки. Далее нейрон разделяется на длинный дендрит, образующий на периферии воспринимающее образование — рецептор, и аксон, входящий через задние рога в спинной мозг. К афферентным нейронам относят также нервные клетки, аксоны которых составляют восходящие пути спинного и головного мозга. Эфферентные нейроны (центробежные) связаны с передачей нисходящих влияний от вышележащих этажей нервной системы к нижележащим (например, пирамидные нейроны коры больших полушарий — рис. 42) или из центральной нервной системы к рабочим органам (например, в передних рогах спинного мозга расположены тела двигательных нейронов, или мотонейронов, от которых идут волокна к скелетным мышцам; в боковых рогах спинного мозга находятся клетки вегетативной нервной системы, от которых идут пути к внутренним органам). Для эфферентных нейронов характерны разветвленная сеть дендритов и один длинный отросток — аксон. Промежуточные нейроны (интернейроны, или вставочные) — это, как правило, более мелкие клетки, осуществляющие связь между различными (в частности, афферентными и эфферентными) нейронами. Они передают нервные влияния в горизонтальном направлении (например, в пределах одного сегмента спинного мозга) и в вертикальном (например, из одного сегмента спинного мозга в другие — выше или нижележащие сегменты). Благодаря многочисленным разветвлениям аксона промежуточные нейроны могут одновременно возбуждать большое число других нейронов (например, звездчатые клетки коры — см. рис. 42).
Функциональное  значение различных  структурных элементов  нервной клетки. Различные структурные элементы нейрона имеют свои функциональные особенности и разное физиологическое значение. Нервная клетка состоит из тела, или сомы (рис. 43), и различных отростков. Многочисленные древовидно разветвленные отростки дендриты (от греч. dendron — дерево) служат входами нейрона, через которые сигналы поступают в нервную клетку. Выходом нейрона является отходящий от тела клетки отросток аксон (от греч. axis — ось), который передает нервные импульсы дальше — другой нервной клетке или рабочему органу (мышце, железе). Форма нервной клетки, длина и расположение отростков чрезвычайно разнообразны и зависят от функционального назначения нейрона.
Среди нейронов встречаются самые  крупные клеточные элементы организма. Размеры их поперечника колеблются от 6—7 мк (мелкие зернистые клетки мозжечка) до 70 мк (моторные нейроны головного  и спинного мозга). Плотность их расположения в некоторых отделах центральной нервной системы очень велика. Например, в коре больших полушарий человека на 1 мм3 приходится почти 40 тыс. нейронов. Тела и дендриты нейронов коры занимают в целом примерно половину объема коры.
В крупных нейронах почти 1/31/4 величины их тела составляет ядро. Оно содержит довольно постоянное количество дезоксирибонуклеиновой кислоты (ДНК). Входящие в его состав ядрышки участвуют в снабжении клетки рибонуклеиновыми кислотами (РНК) и протеинами. В моторных клетках при двигательной деятельности ядрышки заметно увеличиваются в размерах. Нервная клетка покрыта плазматической мембраной—полупроницаемой клеточной оболочкой, которая обеспечивает регуляцию концентрации ионов внутри клетки и ее обмен с окружающей средой. При возбуждении проницаемость клеточной мембраны изменяется, что играет важнейшую роль в возникновении потенциала действия и передаче нервных импульсов. Аксоны многих нейронов покрыты миелиновой оболочкой, образованной Шванновскими клетками, многократно «обернутыми» вокруг ствола аксона. Однако начальная часть аксона и расширение в месте его выхода из тела клетки — аксонный холмик лишены такой оболочки. Мембрана этой немиелинизированной части нейрона — так называемого начального сегмента — обладает высокой возбудимостью.
Внутренняя часть  клетки заполнена цитоплазмой, в  которой расположены ядро и различные  органоиды. Цитоплазма очень богата ферментными системами (в частности, обеспечивающими гликолиз) и белком. Ее пронизывает сеть трубочек и пузырьков — эндоплазматический ретикулюм. В цитоплазме имеются также отдельные зернышки — рибосомы и скопления этих зернышек — тельца Ниссля, представляющие собой белковые образования, содержащие до 50% РНК. Это белковые депо нейронов, где также происходит синтез белков и РНК. При чрезмерно длительном возбуждении нервной клетки, вирусных поражениях центральной нервной системы и других неблагоприятных воздействиях величина этих рибосомных зернышек резко уменьшается.
В специальных  аппаратах нервных клеток — митохондриях совершаются окислительные процессы с образованием богатых энергией соединений (макроэргических связей АТФ). Это энергетические станции нейрона. В них происходит трансформация энергии химических связей в такую форму, которая может быть использована нервной клеткой. Митохондрии концентрируются в наиболее активных частях клетки. Их дыхательная функция усиливается при мышечной тренировке. Интенсивность окислительных процессов нарастает в нейронах более высоких отделов центральной нервной системы, особенно в коре больших полушарий. Резкие изменения митохондрий вплоть до разрушения, а следовательно, и угнетение деятельности нейронов отмечаются при различных неблагоприятных воздействиях (длительном торможении в центральной нервной системе, при интенсивном рентгеновском облучении, кислородном голодании и гипотермии).
Обмен веществ в нейроне. Основной особенностью обмена веществ в нейроне является высокая скорость обмена и преобладание аэробных процессов. Потребность мозга в кислороде очень велика (в состоянии покоя поглощается около 46 мл/мин кислорода). Хотя вес мозга по отношению к весу тела составляет всего 2%, потребление кислорода мозгом достигает в состоянии покоя у взрослых людей 25% от общего его потребления организмом, а у маленьких детей — 50%. Даже кратковременное нарушение доставки кислорода кровью может вызвать необратимые изменения в деятельности нервных клеток: в спинном мозгу — через 20 — 30 мин., в стволе головного мозга — через 15 — 20 мин., а в коре больших полушарий — уже через 5 — 6 мин.
Энерготраты мозга  составляют 1/61/8 суточных затрат организма человека. Основным источником энергии для мозговой ткани является глюкоза. Мозг человека требует для обмена около 115 г глюкозы в сутки. Содержание ее в клетках мозга очень мало, и она постоянно черпается из крови.
Деятельное состояние  нейронов сопровождается трофическими процессами—усилением в них синтеза  белков. При различных воздействиях, вызывающих возбуждение нервных  клеток, в том числе при мышечной тренировке, в их ткани значительно возрастает количество белка и РНК, при тормозных же состояниях и утомлении нейронов содержание этих веществ уменьшается. В процессе восстановления оно возвращается к исходному уровню или превышает его. Часть синтезированного в нейроне белка компенсирует его расходы в теле клетки во время деятельности, а другая часть перемещается вдоль по аксону (со скоростью около 1—3 мм в сутки) и, вероятно, участвует в биохимических процессах в синапсах.
Кровоснабжение  нервных клеток. Высокая потребность нейронов в кислороде и глюкозе обеспечивается интенсивным кровотоком.
Кровь протекает  через мозг в 5—7 раз скорее, чем  через покоящиеся мышцы. Мозговая ткань  обильно снабжена кровеносными сосудами. Наиболее густая сеть их находится  в коре больших полушарий (занимает около 10% объема коры). В отдельных слоях ее средняя длина капиллярной сети достигает у человека 1 м на 1 мм3 ткани. Каждый крупный нейрон имеет несколько собственных капилляров у основания тела клетки, а группы мелких клеток окутаны общей капиллярной сетью. При активном состоянии нервной клетки она нуждается в усиленном поступлении через кровь кислорода и питательных веществ. Вместе с тем жесткий каркас черепа и малая сжимаемость нервной ткани препятствуют резкому увеличению кровоснабжения мозга при работе. Однако это компенсируется выраженными в мозгу процессами перераспределения крови, в результате которых активный участок нервной ткани получает значительно больше крови, чем находящийся в покое. Возможность перераспределения крови в мозгу обеспечена наличием в основаниях артериальных ветвей крупных пучков гладких мышечных волокон — сфинктерных валиков. Эти валики могут уменьшать или увеличивать диаметр сосудов и тем самым производить раздельную регуляцию кровоснабжения разных участков мозга.
Мышечная работа вызывает снижение тонуса стенок мозговых артерий. При развитии физического или умственного утомления тонус артериальных сосудов повышается, что ведет к уменьшению кровотока через нервную ткань.
В головном мозгу  имеется богато развитая система  анастомозов между различными артериями, между венозными сосудами и между артериями и венами. Эта система уменьшает пульсацию внутричерепного кровотока, обусловленную ритмическими сокращениями сердца и дыхательными движениями грудной клетки. Уменьшение пульсовых колебаний способствует улучшению тканевого кровотока. Благодаря наличию артериовенозных анастомозов пульсовые колебания кровотока передаются с артерий мозга на вены, минуя капилляры. Анастомоз между системами сонных и позвоночных артерии (Виллизиев круг) гарантирует постоянство кровотока в различных отделах головного мозга при любом положении головы по отношению к туловищу и направлению силы тяжести, связанном с изменением положения тела в пространстве.

2. Основные физиологические свойтства организма человека

Организм человека, как и всех живых существ, представляет собой обособленную, устойчивую,, саморегулирующуюся, самовоспроизводящуюся открытую биологическую  систему. Жизнедеятельность организма  обеспечена рядом важных физиологических  свойств, которыми обладают отдельные клетки, ткани, органы и их системы и организм в целом.  
Обмен веществ и энергии (метаболизм) является основой жизнедеятельности. В организме человека непрерывно происходят процессы превращения веществ, идущие с затратой или освобождением энергии в результате биохимических реакций. Организм человека – это открытая энергетическая система, т.е. из организма постоянно выводится вещество и энергия, потеря которых постоянно восполняется поступлением вещества и энергии извне. Поэтому метаболизм складывается из двух противоположных процессов:
    анаболизм – это совокупность реакций синтеза, протекающих в клетках, при которых из более простых веществ образуются более сложные; протекают эти реакции с затратой энергии.
    катаболизм - совокупность реакций распада, при которых более сложные вещества распадаются до более простых; идут с освобождением энергии.
Анаболизм и катаболизм - это две взаимосвязанные стороны обмена веществ. Реакции катаболизма освобождают энергию, которая тратится на процессы синтеза веществ. Реакции анаболизма являются поставщиками сложных веществ, идущих на пластические нужды и на расщепление с целью освобождения энергии.
Исходным источником вещества и энергии для организма  человека являются пищевые вещества. Конечные продукты обмена, которые уже не могут усваиваться организмом, выводятся во внешнюю среду. Благодаря непрерывно протекающему процессу обмена веществ организм противостоит разрушающему действию внешней среды. Нарушения обмена веществ ведет к развитию заболеваний, а с прекращением обмена наступает смерть организма.
Раздражимость – это способность клеток, тканей, органа и целостного организма реагировать на действие различных видов энергии, т.е. на действие раздражителей. В наибольшей степени раздражимостью обладают нервные, мышечные и железистые ткани.
Возбудимость – это способность клетки, ткани, органа и организма в целом отвечать на действие энергии раздражителя. Возбуждение прежде всего связано со способностью клеток изменять мембранный потенциал: при действии раздражителя мембранный потенциал покоя клетки преобразуется в потенциал действия ,который способен распространяться по клетке и от клетки к клетке. Особенно выраженным свойством возбудимости обладают нервные, мышечные и секреторные клетки.
Рефлекторные  реакции – это ответные реакции организма, возникающая в ответ на действие каких-либо внешних или внутренних раздражителей, осуществляющиеся с участием нервной системы. Поэтому все процессы жизнедеятельности организма человека – это совокупность огромного количества разнообразных рефлексов, как врожденных, так и приобретенных.
Регуляция физиологических  процессов и функций  – это способность организма изменять интенсивность, скорость, направленность процессов жизнедеятельности в зависимости от состояния организма и состояния внешней среды. В организме человека существует два вида регуляции – нервная и гуморальная. Нервная регуляция осуществляется деятельностью нервной системы, а гуморальная (жидкостная) осуществляется за счет биологически активных веществ, например, гормонов. Биологически активные вещества вырабатываются в различных органах, в том числе в железах внутренней секреции, и поступают в кровь, лимфу, тканевую жидкость. Нервная и гуморальная регуляция тесно взаимосвязаны и согласованы, благодаря чему осуществляется единая нейрогуморальная регуляция всех процессов и функций..
Физиологические адаптации ( от лат, adaptatio – приспособление) – это способность клеток, тканей, органов и организма адекватно и эффективно изменять процессы и функции в связи с изменениями состояния внешней и внутренней среды, что приводит к очень тонкому и точному подстраиванию всех физиологических процессов под сиюминутные нужды организма
Гомеостаз – это состояние организма, характеризующееся относительным постоянством химического состава и свойств внутренней среды, динамическим равновесием всех физиологических процессов и функций. Состояние гомеостаза – это непременное условие устойчивого существования организма человека. Гомеостаз поддерживается благодаря регулирующим механизмам организма (нервная и гуморальная регуляция).
Ритмичностьфизиологических  процессов. Процессы жизнедеятельности во времени периодически усиливаются или ослабляются под действием изменения различных внешних или внутренних факторов. Для человека характерны околосуточные, околонедельные, околомесячные, сезонные, годичные, многолетние биологические ритмы. Биологические ритмы человека сформировались в процессе эволюции как ответная реакция организма на состояние среды. Ритмы сохраняются даже в условиях, при которых искусственно нарушено ритмичное изменение природных факторов.
Рассмотренные физиологические свойства обеспечивают существование организма человека как целостной устойчивой биологической системы, способной противостоять разнообразным воздействиям внешней среды.
3.
Нервно-гуморальная регуляция функций в организме Понятие координации | Печать |
Предметы1 - Анатомия
Деятельность  всех органов и систем организма  согласованна. На воздействия из внешней  и внутренней среды организм реагирует как единое целое. Объединение деятельности различных систем организма в единое целое (интеграция) и согласование, взаимодействие, ведущее к приспособлению организма к различным условиям среды (координация), связаны с деятельностью центральной нервной системы.  Принцип общего конечного пути. Морфологической основой координационной деятельности центральной нервной системы является общий конечный путь. В организме количество афферентных нейронов, по которым передается возбуждение в центральную нервную систему, приблизительно в 5 раз больше, чем эфферентных (центробежных) нейронов. Шеррингтон такое соотношение между центростремительными и центробежными нейронами схематически представил в виде воронки с широким входным отверстием, через которое в центральную нервную систему поступают импульсы от различных рецепторов, и с узким выходным отверстием, через которое по сравнительно небольшому числу центробежных нейронов возбуждение достигает эффекторов. При таком положении на пути к одному центробежному нейрону находится множество импульсов от различных рецепторных зон. Происходит своеобразная борьба за «общий конечный путь». И центральная нервная система, ее функциональное состояние в данный момент, определяет, какой из множества пришедших нервных импульсов завладеет общим конечным путем. Иррадиация и индукция в центральной нервной системе. Импульсы возбуждения, возникшие при раздражении того или иного рецептора, поступая в центральную нервную систему, распространяются на соседние ее участки. Это распространение возбуждения в центральной нервной системе называют иррадиацией. Иррадиация тем шире, чем сильнее и длительнее нанесенное раздражение. Иррадиация возможна благодаря многочисленным отросткам у центростремительных нервных клетках и вставочных нейронах, связывающих различные участки нервной системы. Иррадиация хорошо выражена у детей, особенно в раннем возрасте. Дети дошкольного и младшего школьного возраста при появлении красивой игрушки раскрывают рот, прыгают, смеются от удовольствия. В естественных условиях, несмотря на широкие возможности иррадиировать по центральной нервной системе, возбуждение фактически распространяется в определенных пределах, что делает возможным осуществление определенных, координированных рефлекторных реакций. В процессе дифференцирования раздражителей торможение ограничивает иррадиацию возбуждения. В результате возбуждения концентрируется в определенных группах нейронов. Теперь вокруг возбужденных нейронов возбудимость падает, и они приходят в состояние торможения. Это явление одновременной отрицательной индукции. Концентрацию внимания можно рассматривать как ослабление иррадиации и усиление индукции. Рассеивание внимания от действия шума, громкого смеха или разговора является результатом ослабления индукции, сто создает благоприятные условия для иррадиации возбуждения. Рассеивание внимания можно рассматривать также как результата индукционного торможения, наведенного новым очагом возбуждения в результате возникшей ориентировочной реакции. В нейронах, которые были возбуждены, после возбуждения возникает торможение и, наоборот, после торможения в тех же нейронах возникает возбуждение. Это последовательная индукция. Последовательной индукцией можно объяснить усиленную двигательную активность индукцией можно объяснить усиленной. Двигательную активность школьников во время перемен после длительного торможения в двигательной области коры больших полушарий в течение урока. Отдых на перемене должен быть активным и подвижным. ГИПОТАЛАМУС Гипоталамус развивается из базальной части промежуточного мозгового пузыря. Принадлежит к ЦНС, и объединяет нервную и эндокринную систему в нейросекреторную систему. Контролирует все железы внутренней секреции через гипофиз. В сером веществе гипоталамуса находятся нейроны и нейросекреторные клетки организованные в ядра. Выделяют 32 пары ядер. Контроль гипоталамуса осуществляется посредством нейросекреции по 2 путям:* Нейральный - по аксонам * Гуморальный - по сосудам В передней части гипоталамуса находятся 2 парных ядра: * супраоптическое ядро, которое выделяет вазопрессин (антидиуретический гормон) * паравентрикулярное ядро, которое секретирует окситоцин (действует на миометрий матки, миоэпителиальные клетки молочной железы). Эти гормоны по аксонам идут в заднюю долю гипофиза. Средний отдел гипоталамуса составляют мелкие нейросекреторные клетки образующие аркуатное ядро и вентромедиальное. Гормоны поступают по аксонам в первичную гемокапиллярную сеть. Эти ядра выделяют гормоны способные суживать и расширять сосуды. Их образование зависит от содержания в крови продуктов метаболизма сердечной мышцы. Нейросекреторная деятельность испытывает влияние высших отделов головного мозга и эпифиза. Гормоны гипоталамуса и гипофиза. В гуморальной регуляции  функций внутренних органов принимают участие многие отделы нервной системы. Главные из них: гипоталамус - особый отдел  промежуточного мозга и гипофиз - мозговой придаток, расположенный на нижней поверхности головного мозга, являющийся типичной железой внутренней секреции. Вещества, выделяемые в кровь этими отделами головного мозга, называют нейрогормонами. Гипоталамус и гипофиз в своей деятельности тесно между собой связаны, образуя единую гипоталамо-гипофизарную систему. Она обеспечивает постоянство состава крови и необходимый уровень обмена веществ. Контроль гипоталамуса над внутренними органами возможен благодаря тому, что он регулирует функции гипофиза - главной железы внутренней секреции, которая управляет деятельностью всех остальных желез внутренней секреции: щитовидной, поджелудочной, половых, надпочечников. В работе гипоталамо-гипофизарной системы заложен принцип обратной связи. Когда какие-нибудь железы внутренней секреции начинают выделять слишком мало или, наоборот, чересчур много гормонов, гипоталамус улавливает отклонение в их концентрации в крови от необходимого на данный момент уровня. Затем, возбуждая или тормозя гипофиз и через него соответствующую железу внутренней секреции, гипоталамус переводит ее функцию на нужный уровень. Воздействия гипоталамуса осуществляются двумя путями. Вырабатываемые им нейрогормоны по специальным сосудам попадают прямо в переднюю долю гипофиза, а воздействие на его заднюю долю осуществляется по специальным нервным волокнам. Гипоталамо-гипофизарная система является типичным примером тесного объединения нервного и гуморального способов регуляции функций нашего организма.
 
4. Потенциал покоя, уравнение Нернста
Между внутренней и наружной поверхностями клеточной  мембраны всегда существует разность электрических потенциалов. Эта  разность потенциалов, измеренная в состоянии физиологического покоя клетки, называется потенциалом покоя.
Причиной возникновения  потенциалов клеток как в покое, так и при возбуждении является неравномерное распределение ионов  калия и натрия между содержимым клеток и окружающей средой.
Концентрация ионов калия внутри клеток в 20 - 40 раз превышает их содержание в окружающей клетку жидкости. Напротив, концентрация натрия в межклеточной жидкости в 10 - 20 раз выше, чем внутри клеток.
Такое неравномерное  распределение ионов обусловлено  активным переносом ионов - работой натрий-калиевого насоса.
Как было установлено, возникновение потенциала покоя  обусловлено, в основном, наличием концентрационного  градиента ионов калия и неодинаковой проницаемостью клеточных мембран  для различных ионов.
Согласно теории Ходжкина, Хаксли, Катца, клеточная мембрана в состоянии покоя проницаема, в основном, только для ионов калия.
Ионы калия  диффундируют по концентрационному  градиенту через клеточную мембрану в окружающую жидкость; анионы не могут  проникать через мембрану и остаются на ее внутренней стороне.
Так как ионы калия имеют положительный заряд, а анионы, остающиеся на внутренней поверхности мембраны, - отрицательный, то внешняя поверхность мембраны при этом заряжается положительно, а внутренняя - отрицательно.
Понятно, что  диффузия продолжается только до того момента, пока не установится равновесие между силами, возникающего электрического поля и силами диффузии.
Если принять, что потенциал покоя определяется диффузией только ионов калия  из цитоплазмы наружу, то его величина E может быть найдена из уравнения Нернста:
мембранный потенциал  клетка электродиффузия
где [K]i и [K]e - активность ионов калия внутри и снаружи клетки; F - число Фародея;T - абсолютная температура; E - изменение потенциала; R - газовая константа.
5. Потенциа?л де?йствия волна возбуждения, перемещающаяся по мембране живой клетки в процессе передачи нервного сигнала. По сути своей представляет электрический разряд — быстрое кратковременное изменение потенциала на небольшом участке мембраны возбудимой клетки (нейрона, мышечного волокна или железистой клетки), в результате которого наружная поверхность этого участка становится отрицательно заряженной по отношению к соседним участкам мембраны, тогда как его внутренняя поверхность становится положительно заряженной по отношению к соседним участкам мембраны. Потенциал действия является физической основой нервного или мышечного импульса, играющего сигнальную (регуляторную) роль.


Рис. 1. Схема распределения зарядов по разные стороны мембраны возбудимой клетки в спокойном состоянии (A) и при возникновении потенциала действия (B) (см. объяснения в тексте).
Потенциалы действия могут различаться по своим параметрам в зависимости от типа клетки и  даже на различных участках мембраны одной и той же клетки. Наиболее характерный пример различий: потенциал действия сердечной мышцы и потенциал действия большинства нейронов. Тем не менее, в основе любого потенциала действия лежат следующие явления:
    Мембрана живой клетки поляризована — её внутренняя поверхность заряжена отрицательно по отношению к внешней благодаря тому, что в растворе возле её внешней поверхности находится бо?льшее количество положительно заряженных частиц (катионов), а возле внутренней поверхности — бо?льшее количество отрицательно заряженных частиц (анионов).
    Мембрана обладает избирательной проницаемостью — её проницаемость для различных частиц (атомов или молекул) зависит от их размеров, электрического заряда и химических свойств.
    Мембрана возбудимой клетки способна быстро менять свою проницаемостъ для определённого вида катионов, вызывая переход положительного заряда с внешней стороны на внутреннюю (Рис.1).
Первые два  свойства характерны для всех живых клеток. Третье же является особенностью клеток возбудимых тканей и причиной, по которой их мембраны способны генерировать и проводить потенциалы действия.
Фазы потенциала действия
    Предспайк — процесс медленной деполяризации мембраны до критического уровня деполяризации (местное возбуждение, локальный ответ).
    Пиковый потенциал, или спайк, состоящий из восходящей части (деполяризация мембраны) и нисходящей части (реполяризация мембраны).
    Отрицательный следовой потенциал — от критического уровня деполяризации до исходного уровня поляризации мембраны (следовая деполяризация).
    Положительный следовой потенциал — увеличение мембранного потенциала и постепенное возвращение его к исходной величине (следовая гиперполяризация).

6. Законы раздражения

Любой агент, повышающий натриевую проницаемость мембраны, является раздражителем возбудимой ткани. Раздражителями нервных и  мышечных волокон могут быть: электрический ток, механические воздействия (щипок, удар, разрез), резкое охлаждение или согревание, различные кислоты, щелочи, концентрированные растворы солей и т. д.
Среди всех указанных  раздражителей электрический ток  занимает особое место, так как, во-первых, он может быть легко и точно дозирован по силе, длительности и крутизне нарастания, а во-вторых, он не повреждает живую ткань и его действие быстро и полностью обратимо при тех его силах, которые достаточны для вызова возбуждения. Изучение действия электрического раздражения на возбудимые ткани представляет большой интерес для физиологии, потому что проведение возбуждения в нервах и мышцах осуществляется с помощью локальных электрических токов, возникающих между возбужденным и покоящимся участком ткани.
В лабораторных условиях и при проведении некоторых  клинических исследований для раздражения  нервов и мышц применяют электрические  стимулы различной формы: прямоугольной, синусоидальной, линейно и экспоненциально  нарастающей, индукционные удары, конденсаторные разряды и т. п.
Механизм раздражающего  действия тока при всех видах стимулов в принципе одинаков, однако в наиболее отчетливой форме он выявляется при  использовании постоянного тока прямоугольной формы.  
Для того чтобы раздражитель вызвал возбуждение, он должен иметь достаточную силу, длительность и крутизну нарастания.  
 
Порог раздражения  
 
Та наименьшая сила раздражителя, которая необходима для возникновения потенциала действия в возбудимой ткани, называется порогом раздражения. Стимулы, сила которых ниже пороговой величины, называются подпороговыми, а более сильные, чем пороговые,- сверхпороговыми.

При использовании  в качестве раздражителя электрического тока порог выражается в единицах силы тока или напряжения. Абсолютная величина порога зависит от свойств и физиологического состояния ткани, а также от способа нанесения раздражения.
Существует два  способа подведения электрического тока к ткани: внеклеточный и внутриклеточный. Первый состоит в том, что оба  электрода располагают на поверхности  раздражаемой ткани. Ток входит в ткань в области анода и выходит в области катода. Недостаток этого метода заключается в значительном ветвлении тока: только часть его проходит через мембраны клеток, часть же ответвляется в межклеточные щели. Вследствие этого при раздражении приходится применять значительно большую силу тока, чем это в действительности необходимо для возникновения возбуждения.
Более точным является второй способ раздражения посредством  внутриклеточного электрода. Микроэлектрод  с диаметром кончика около 0,5 мК вводят в клетку, второй - обычный электрод - прикладывают к поверхности ткани. В этом случае весь приложенный ток проходит через мембрану клетки, что позволяет точно определить величину порога раздражения: у различных клеток он варьирует в пределах 10~7-10~9 а. Внутриклеточное раздражение обычно сочетают с регистрацией потенциалов через другой, внутриклеточный электрод.  
 
Полезное время раздражения
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.