На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


реферат Периодическая система Д.И. Менделеева: современное толкование

Информация:

Тип работы: реферат. Добавлен: 06.09.2012. Сдан: 2011. Страниц: 14. Уникальность по antiplagiat.ru: < 30%

Описание (план):


Белорусский государственный университет
      Факультет международных отношений
      Кафедра таможенного дела 
 
 
 
 
 
 
 
 
 

Реферат по естествознанию на тему:
« Периодическая система  Д.И. Менделеева:
современное толкование » 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                                              Выполнила студентка 1 курса
                       Мартынович Ольга
                                       Группа 14 
 
 
 
 
 
 
 

                  Минск 2011 
 

СОДЕРЖАНИЕ 

Введение                                                                                                                   3
Глава 1. История  создания периодической системы  Д.И. Менделеева             4
Глава 2. Описание периодической системы                                                         6
Заключение                                                                                                             11
Список используемых источников  12  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ВВЕДЕНИЕ 

    Периодическая система элементов Д.И. Менделеева – естественная система химических элементов, созданная Д.И. Менделеевым на основе открытого им периодического закона в 1869 г. Менделеев впервые сформулировал сущность периодического закона. А в 1871 г. предложил более развернутую его формулировку:
   Физические и химические свойства элементов, проявляющиеся в свойствах простых и сложных тел, ими образованных, стоят в периодической зависимости.
   Современная, более точная и глубокая формулировка периодического закона отражает периодическую зависимость свойств элементов от числа электронов в атоме, определяемом зарядом атомного ядра; это число равно порядковому (атомному) номеру элемента в системе Менделеева. Поскольку, однако, атомные веса элементов, как правило, возрастают в той же последовательности, что и заряды атомных ядер, современная табличная форма периодической системы принципиально совпадает с менделеевской.   
   Периодическая система отражает объективно существующую взаимосвязь между химическими элементами. Поэтому она и была названа Менделеевым «естественной» системой элементов.
   Периодический закон не имеет равных в истории науки. Вместо разрозненных, не связанных между собой веществ перед наукой встала единая стройная система, объединившая в одно целое все химические элементы.
   Менделеев указал путь направленного поиска в химии будущего. Многие ученые основывались на Периодическом законе, предсказывая и описывая неизвестные химические элементы и их свойства.
Закон Менделеева оказал огромное влияние  на развитие знаний о строении атома, о природе веществ. 
 
 
 
 
 
 
 
 

   
 

   
 
 
 

ГЛАВА 1
История создания периодической  системы Д.И. Менделеева 

    Первого марта 1869 года Д.И. Менделеев обнародовал периодический закон и его следствие — таблицу элементов. В 1870 году он назвал систему „естественной“, а спустя год — „периодической“. Это открытие было подготовлено и предшествующей 15-летней научной деятельностью самого Менделеева, нашедшего отдельные важные соотношения в свойствах элементов; непосредственным же поводом к поискам послужило составление систематического курса химии, названного впоследствии «Основы химии». Менделеев в качестве основной характеристики, однозначно определяющей химический элемент, выбрал атомный вес. Менделеев руководствовался твердой уверенностью в существовании общего закона природы, определяющего свойства и различия между всеми элементами. И искал закономерности в изменении атомных весов не только у химически сходных элементов, внутри одной естественной группы, но и между несходными элементами. Сопоставив такие крайне противоположные в химическом отношении, но близкие по атомным весам их членов группы, как щелочные металлы и галогены, и написав первые под вторыми, Менделеев расположил под и над ними и другие группы сходных элементов в порядке изменения атомных весов. Оказалось, что члены этих естественных групп образуют общий закономерный ряд, причем химические свойства элементов периодически повторяются. Таблица (далёкий прообраз современной), демонстрирующая закон, была представлена Менделеевым под названием „Опыт системы элементов, основанный на их же атомном весе и химическом сходстве“. Им же была дана формулировка закона: „Свойства элементов, а потому и свойства образуемых ими простых и сложных тел, находятся в периодической зависимости от их же атомного веса“. Таблица состояла из шести вертикальных групп, предшественниц будущих периодов. По горизонтали прослеживались ещё не полные ряды элементов, прообразов будущих подгрупп (сегодня — групп) элементов. Она содержала 67 элементов (сейчас их около 120), в том числе три предсказанных, впоследствии открытых и названных „укрепителями периодического закона“.
    Естественно, первая таблица была несовершенной, и в последующие годы Менделеев многократно дополнял её и вносил в её структуру изменения. В момент представления первого варианта таблицы (март 1869 года) не были ещё известны благородные („инертные“) газы (Не, Ne, Ar, Kr, Xe, Rn) и отсутствовали сведения о внутреннем строении атомов.
   Лишь в двадцатых годах прошлого столетия, после революционных открытий в физике, применения рентгеновских лучей и обнаружения благородных газов, стало возможным дать современное определение закона о периодической зависимости свойств элементов от порядкового номера элемента, а не от атомного веса, как было вначале отмечено Д. Менделеевым. Иными словами, в трактовке закона понятие „атомный вес“ элемента было заменено словами „порядковый (или атомный) номер“, что отвечает числу протонов в ядре атома и, соответственно, числу электронов у нейтрального атома. Первым вариантом системы элементов, предложенным Д. И. Менделеевым 1 марта 1869 г., был так называемый вариант длинной формы. В этом варианте периоды располагались одной строкой. В декабре 1870 г. он опубликовал второй вариант периодической системы — так называемую короткую форму. В этом варианте периоды разбиваются на ряды, а группы — на подгруппы (главную и побочную).
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ГЛАВА 2
Описание  периодической системы 

    В периодической системе по горизонтали имеется 7 периодов, из них первые три называются малыми, а остальные — большими. В первом периоде находится 2 элемента, во втором и третьем — по 8, в четвертом и пятом — по 18, в шестом — 32, в седьмом (незавершенном) — 21 элемент. Каждый период, за исключением первого” начинается щелочным металлом и заканчивается благородным газом (7-й период — незаконченный).
   Все элементы периодической системы пронумерованы в том порядке, в каком они следуют друг за другом. Номера элементов называются порядковыми или атомными номерами.
   В системе 10 рядов. Каждый малый период состоит из одного ряда, каждый большой период — из двух рядов: четного (верхнего) и нечетного (нижнего). В четных рядах больших периодов (четвертом, шестом, восьмом и десятом) находятся одни металлы, и свойства элементов в ряду слева направо изменяются слабо. В нечетных рядах больших периодов (пятого, седьмого и девятого) свойства элементов в ряду слева направо изменяются, как у типических элементов
   Основным признаком, по которому элементы больших периодов разделены на два ряда, является их степень окисления. Их одинаковые значения дважды повторяются в периоде с ростом атомных масс элементов. Например, в четвертом периоде степени окисления элементов от К до Mn изменяются от +1 до +7, затем следует триада Fe, Со, Ni (это элементы четного ряда), после чего наблюдается такое же возрастание степеней окисления у элементов от Cu до Br (это элементы нечетного ряда). То же мы видим в остальных больших периодах, исключая седьмой, который состоит из одного (четного) ряда. Дважды повторяются в больших периодах и формы соединений элементов.Определение стало отвечать данным об электронном строении атома, диктующим периодическую повторяемость свойств атомов через 2 (s-элементы), 6 (р-элементы), 10 (d-элементы) и 14 (f-элементы) элементов. Эти цифры отвечают максимально возможному числу электронов на определённом энергетическом уровне атома. Они же соответствуют и числу возможных элементов в соответствующем периоде. На первом энергетическом уровне дозволено быть только двум электронам (на s-уровне). Они привели к наличию в первом периоде двух элементов: водорода и гелия. На втором энергетическом уровне восемь разных электронов отвечают появлению восьми новых элементов — от лития до неона.
    Аналогичная картина наблюдается и в третьем периоде. В нём, вместо ожидаемых восемнадцати, также восемь элементов — от натрия до аргона. Здесь произошла задержка с образованием десяти d-элементов из-за того, что 3d-электроны оказались на более высоком энергетическом уровне, чем 4s-электроны. По этой причине 3d-элементы (скандий, титан и др.) появляются лишь в четвёртом периоде после двух 4s-элементов (калий и кальций). Они предшествуют 4р-элементам (от галлия до криптона). Этим объясняется возникновение обобщающего термина — „переходные элементы“, „вставная декада“. В пятом периоде наблюдается аналогичная картина, в него с опозданием приходят 4d-элементы; они также оказываются переходными. Описанные естественные явления были одной из причин создания таблицы из восьми групп. Однако „запаздывают“ также по четырнадцать 4f- и 5f-элементов уже на два периода. Из-за их большего числа и расположения этих электронов в третьем снаружи слое (близость свойств) в обеих обсуждаемых здесь формах таблиц они выделены вне групп. Общее правило при образовании периодов системы — все они начинаются со щелочных металлов с первым ns1-электроном, образующим n-период (n — номер периода системы). Завершает каждый период „инертный“ газ с последним np6-электроном. Исключение — первый период системы, он находится всегда на особом положении.
    Таким образом, число элементов в семи известных периодах составляет 2, 8, 8, 18, 18, 32, 32. В соответствии с указанными числами будут наполняться элементами все периоды в порядке возрастания их порядковых номеров. При этом один и тот же элемент может оказаться в различных по номеру группах, что заметно при сравнении двух таблиц.
   Рассмотренные цифры позволяют создать таблицы, состоящие из 2, 8, 18 или 32 групп элементов в трёх вариантах — из (2+6), (2+6+10) или (2+6+10+14) групп. Исторически, как наиболее удобные, распространение получили в первую очередь таблицы, состоящие из 8 или 18 вертикальных групп:
  а) Короткая форма таблицы. Она, к сожалению, до сих пор приводится в большинстве российских справочников и учебных пособий, хотя официально отменена ИЮПАК в 1989 году. Таблица состояла из VIII (+0) групп „типических“ элементов, подгрупп (иногда и рядов) и периодов элементов. В современной зарубежной литературе эта форма таблицы заменена длинной формой.
  б) Длинная (реже называемая длиннопериодной или полудлинной) форма таблицы. Она была утверждена ИЮПАК в 1989 году, состоит из 18 групп, обозначенных арабскими (вместо римских) цифрами, и не содержит „типических“ элементов, подгрупп, рядов и семейств. Её упрощённые варианты появлялись гораздо раньше, но чаще всего с одним отличием — групп, обозначенных римскими цифрами, было восемь (с их растяжкой до восемнадцати за счёт приставок а и b и искусственным созданием триад элементов).
 в) Сверхдлинная (реже именуемая длинной) форма таблицы состояла бы из 32 групп элементов. Официально она вряд ли будет принята в предвидимом будущем, так как каждая из 14 дополнительных групп (сверх 18) содержала бы лишь два элемента (один лантаноид и один актиноид), близкие по свойствам ко всем остальным тринадцати элементам периода.
     До 80–90-х годов прошлого века были распространены две первые формы таблицы. Первая — архаичная короткая форма с „насильственной“ упаковкой элементов в восемь (I-VIII), иногда девять (+0) групп, подразделённых дополнительно ещё на ряды (8 или 10) и подгруппы, содержавшие два или три „типических“ элемента, предшествующих, в свою очередь, двум спорным по названиям (A, B или a, b, „главная“ или „побочная“).
    При выборе и утверждении длинного варианта таблицы были соблюдены „интересы“ большинства элементов и принцип „золотой середины“ без нарушения основы закона Менделеева — периодичности в свойствах элементов. Сорок элементов (по 10 d-элементов в каждом из периодов с 4 по 7), относимые ранее к „переходным“, или „вставным“ (между s- и p-элементами), и называемые „побочными“, после 1989 года перестали быть таковыми. Они стали полноправными компонентами своих новых десяти групп.
     С официальным принятием новой формы таблицы исчезли, став лишними, надуманные или принятые вынужденно термины: „типические элементы“, „подгруппа“ (главная и побочная), „триада“, „ряды“, „семейства“ (железа или платиновых металлов). Все элементы одной группы (кроме водорода и гелия — они всегда на особом положении), расположенные вертикально в один ряд, имеют в принципе одинаковые две наружные (определяющие степень окисления) s- + p- или s- + d-орбитали электронов. Лантаноиды и актиноиды (f-элементы), как и раньше, остаются в третьей группе в соответствии с наличием в их же электронных орбиталях условно s2d1-электронов. Различия в электронной структуре атомов актиноидов здесь не обсуждаются.
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.