На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Контрольная Построение аналитической группировки с целью изучения зависимости между стажем работы рабочих, выработкой и качеством изготавливаемой продукции. Интервальный вариационный ряд распределения с равновеликими интервалами. Средняя выработка, мода и медиана.

Информация:

Тип работы: Контрольная. Предмет: Математика. Добавлен: 14.07.2009. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


2
КАФЕДРА МЕНЕДЖМЕНТА
КОНТРОЛЬНАЯ РАБОТА
По курсу: “Статистика"
Выполнил:
Проверил:
2007

Задача 1

На промышленном предприятии механическим способом отбора было обследовано 10% рабочих в количестве 30 человек. В результате обследования получены данные, приведенные в приложениях А, Б, В. С целью изучения зависимости между стажем работы рабочих, выработкой и качеством изготавливаемой продукции произвести аналитическую группировку по стажу работы, образовав три группы с интервалами до 3 лет, от 3 до 10, 10 и выше.

По каждой группе и по совокупности в целом подсчитать:

число рабочих;

количество произведенной продукции;

среднюю месячную выработку;

средний процент брака.

Результаты представить в виде таблицы, указать тип таблицы и сделать выводы о наличии связи между указанными признаками.

В качестве группировочного признака берем стаж рабочего.

После того, как выбран группировочный признак, намечено число групп и образованы сами группы, необходимо отобрать показатели, которые характеризуют группы, и определить их величины по каждой группе. Показатели, характеризующие рабочих, разносятся по трем вышеуказанным группам, и подсчитываются групповые итоги. Они заносятся в специально составленную таблицу (табл.1).

Таблица 1. - Вспомогательная таблица для построения аналитической группировки

№ рабочего
Стаж
Выработка
% брака
Стаж до 3 лет
1
1
153
1,6
3
1
132
8,5
6
1
162
7,8
10
1
143
7,5
?=4
-
590
25,4
От 3 до 10 лет
2
4
168
6,2
4
9
124
19,5
5
3
171
6,1
7
8
125
13,0
8
3
102
7,0
9
8
170
5,8
?=6
-
860
79,9
Свыше 10 лет
-
-
-
-
Итого по таблице 10
-
3324
-
На основании данных табл.1 построим аналитическую группировку (табл.2).
Таблица 2. - Связь между стажем работы рабочих, выработкой и качеством продукции
Группы рабочих по стажу, лет
Число рабочих
Изготовлено продукции, шт.
Процент брака
Всего по группе
Одним рабочим
Всего по группе
Одного рабочего
А
1
2
3
4
5
До 3 лет
4
590
147,5
25,4
4,23
От 3 до 10 лет
6
860
143,3
79,9
13,32
свыше 10
0
-
-
-
-
всего
10
1450
145
271,2
-
Примечание. Графа 3=графа 2: графа 1; графа 5=графа 4: графа1
Вывод. Данная таблица является аналитической, так как выявляет взаимосвязь между признаками. Факторный признак-стаж (графа А). Результативные признаки: выработка (графа 3) и процент брака на одного рабочего (графа 5). На основании данных граф А и 3 можно сделать вывод, что связи между стажем и выработкой нет. Отсутствует также связь между стажем и процентом брака (графы А и 5).
По построению подлежащего (графа А) таблица является групповой. По разработке сказуемого - сложной (графы 1-5).

Задача 2

По исходным данным приложений Б и В построить интервальный вариационный ряд распределения с равновеликими интервалами. Результаты вычислений представить в виде таблицы.

Изобразить ряд распределения графически, построив гистограмму, полигон и кумуляту распределения.

РЕШЕНИЕ:

Для построения интервального ряда распределения с равновеликими интервалами по выработке выполним следующие действия:

Выберем минимальное значение выработки x min=102 шт.;

Выберем максимальное значение x max =171 шт.;

Определим размах совокупности: R= x max - x min= 171-102=69.

Определим число интервальных групп по формуле: m = vn

где n- объем совокупности (n=10).

Определим величину интервала

d= R/m = 69/3 = 23

Построим интервалы по следующему алгоритму:

Первый интервал равен 102- (102+23) = 102-125;

Второй интервал равен 125- (125+23) = 125-148;

Третий интервал равен 148- (148+23) = 148-171.

По каждой интервальной группе подсчитаем число рабочих с заданными признаками.

Результаты представим в виде табл.3.

Таблица 3. - Распределение рабочих по выработке

Группы рабочих по выработке, шт. (Х)
Число рабочих (f)
Накопленная частота (S)
102-125
2
2
125-148
2
4
148-171
6
10
итого
10
-
Изобразим графически полученный ряд распределения (рис.1-3).

Задача 3

На основании полученного ряда распределения в задаче 2 определить среднюю выработку, моду и медиану. Изобразите графически моду и медиану. Сделайте выводы.

РЕШЕНИЕ:

1. Расчет средней выработки.

Среднюю величину в интервальном ряду распределения рассчитывают по формуле средней арифметической взвешенной:

где х - середины интервалов;

f - частота.

Расчет необходимых данных выполним в табл.4.

Таблица 4. - Расчет данных для определения средней и дисперсии

Группы рабочих по выработке, шт.
Число рабочих (f)
Середины интервалов (х)
х f
x ?
(х-) 2
(х-) 2•f
102-125
2
113,5
227
-32,2
1036,84
2073,68
125-148
2
136,5
273
-9,2
84,64
169,28
148-171
6
159,5
957
13,8
190,44
1142,64
итого
10
-
1457
-
-
3385,6
2. Мода (Мо) - значение признака, повторяющееся с наибольшей частотой. В интервальном ряду распределения мода определяется следующим образом:
Находим модальный интервал, которому соответствует наибольшая частота. В данной задаче модальными интервалом будет интервалы [148-171], так как ему соответствует наибольшая частота (6).
Внутри модального интервала мода определяется по формуле:
где х0 - нижняя граница модального интервала;
f0 - частота модального интервала;
f -1 - частота интервала, предшествующего модальному;
f+1 - частота интервала, следующего за модальным.
На основании данной формулы и табл.4 определим модальные значения средней выработки.
Вывод:
У большинства рабочих данной совокупности выработка составляет 157,20 шт. в месяц.
Медианой называется значение признака, приходящееся на середину ранжированной (упорядоченной) совокупности.
Для определения медианы в интервальном ряду сначала необходимо определить медианный интервал. Им считается тот, до которого сумма (накопленный итог) численностей меньше половины всей численности ряда, а с прибавлением его численности - больше половины. На основании данных табл.3 определим накопленные итоги (графа 3 табл.3). Половина численности ряда равна 5 (10: 2). Таким образом, третий интервал является медианным, так как накопленный итог предшествующего интервала меньше 5 (4<5), а накопленный итог 3-го интервала больше 5 (10>5).
Внутри медианного интервала медиана определяется по формуле:
где х0 - нижняя граница медианного интервала;
d - величина медианного интервала;
f - численность ряда (сумма частот);
S - накопленные итоги численностей до медианного интервала;
f0 - численность медианного интервала.
Ме = 125+23Ч (2-4) /2= 102 шт.
Вывод:
50% рабочих данной совокупности имеют выработку до 102 шт., а вторая половина рабочих - выше 102 шт.

Задача 4

По результатам вычислений задач 2, 3 вычислить дисперсию, среднее квадратическое отклонение и коэффициент вариации. Поясните смысл полученных характеристик вариации.

РЕШЕНИЕ:

Дисперсия-это средний квадрат отклонения.

Расчет дисперсии для всей совокупности, представленной в виде сгруппированного ряда в табл.4, осуществляется по формуле:

где х - середины интервалов;

Расчет данных для вычисления дисперсии выполним в табл.4.

у2 = 3385,6: 10= 338,5

Среднее квадратическое отклонение определяется по формуле:

Коэффициент вариации определяется по формуле:

Коэффициент вариации меньше 33%, следовательно, совокупность является однородной, а средняя - типичной и устойчивой.

Задача 5

На основании аналитической группировки задачи 1 вычислить общую, межгрупповую и среднюю из внутригрупповых дисперсий. Определите корреляционное отношение по выработке одного рабочего. Сделайте выводы.

РЕШЕНИЕ:

Общая дисперсия измеряет вариацию признака во всей совокупности под влиянием всех факторов, обусловливающих эту вариацию и рассчитывается по формуле:

где - общая средняя по всей совокупности.

Межгрупповая дисперсия характеризует систематическую вариацию, т.е. различия в величине изучаемого признака, возникающие под влиянием признака-фактора, положенного в основание группировки. Она рассчитывается по формуле:

Где - средние по отдельным группам;

nj -численности по отдельным группам.

Внутригрупповая дисперсия отражает случайную вариацию, т.е. часть вариации, происходящую под влиянием неучтенных факторов и не зависящую от признака-фактора, положенного в основание группировки. Она исчисляется следующим образом:

Средняя из внутригрупповых дисперсий:

Закон, связывающий три вида дисперсий: общая дисперсия равна сумме средней из внутригрупповых и межгрупповых дисперсий:

у2общ = д2+ у2

Данное соотношение называют правилом сложения дисперсий.

Для решения задачи сначала определим средние по каждой группе. Расчет средних выполнен в табл.5.

Средняя выработка в первой группе (до 3 лет) равна

х1 = 134,2 шт. (971: 5), во второй (от 3 до 10 лет) х2 = 127,0625 шт. (2033: 16), в третьей (свыше 10 лет) х3 = 142,667 шт. (1284: 9)

Промежуточные расчеты дисперсий по группам представлены в табл.5.

Таблица 5. - Расчет данных для определения внутригрупповых дисперсий.

№ рабочего
Выработка (х)
1
2
3
4
До 3 лет
1
153
5,5
30,25
3
132
-15,5
240,25
6
162
14,5
210,25
10
143
-4,5
20,25
Итого: 5
590
-
501,00
От 3 до 10 лет
2
168
24,67
608,4
4
124
-19,33
373,8
5
171
27,67
765,4
7
125
-18,33
336,1
8
102
-41,33
1708,4
9
170
26,67
711,1
Итого: 6
860
-
4503,3
свыше 10 лет
-
-
-
-
Итого: 10
1450
-
5004,3
Подставив полученные значения в формулу, получим:
= (501 Ч 4) /10 = 200,4
= (4503,3 Ч 6) /10 = 2701,98
Средняя из групповых дисперсий:
= (200,4 Ч4+2701,98Ч6): 10 = (801,6 + 16211,88) / 10 = 1701,348
= [ (147,5-145) 2Ч4+ (143,3 -145) 2Ч6]: 10 = (25 + 17,34) /10= 4,234
Затем рассчитаем межгрупповую дисперсию. Средняя (общая) по всей совокупности равна 132,93 шт. (см. табл.2).
Таким образом, общая дисперсия согласно правилу сложения дисперсий:
у2общ22+ у2=1701,348+4,234 = 1705,582
На основании правила сложения дисперсий можно определить показатель тесноты связи между группировочным (факторным) и результативным признаками, который называется корреляционным отношением:
Величина 0,04982 показывает отсутствие связи между группировочным и результативным признаками.
Коэффициент детерминации з2 равен:
з2=0,049822 = 0,0024820324 или 0,2482%
Он показывает, что вариация выработки на 0,2482% зависит от стажа и на 99,7518% (100% - 0,2482%) от других неучтенных факторов.

Задача 6

По исходным данным задачи 2 и результатам вычислений задачи 3, 4 установите:

с вероятностью 0,954 возможные пределы средней выработки в генеральной совокупности;

с вероятностью 0,997 возможные пределы удельного веса численности рабочих, имеющих выработку выше средней;

сколько необходимо отобрать рабочих, чтобы с вероятностью 99,7% предельная относительная ошибка выборки не превышала 5%?

РЕШЕНИЕ:

Средняя ошибка выборки определяется по формуле:

где k-коэффициент выборочного наблюдения (по условию задачи 10% или 0,1)

Предельная ошибка выборки определяется по формуле:,

где t - коэффициент доверия (для вероятности 0,954 равен 2)

Определим предельную ошибку средней выработки:

Д х= = = 11,04 шт.

Найдем границы изменения средней величины в генеральной совокупности:

145,7 -11,04< <145,7+11,04; 134,66 < <156,74

Вывод:

С вероятностью 0,954 можно утверждать, что средняя выработка одного Рабочего в генеральной совокупности находится в пределах от 134,66 шт.д.о 156,74 шт. (не ниже 134,66 шт., но не выше 156,74 шт)

2. Определим удельный вес рабочих, у которых выработка выше средней (145,7 шт.). Таких рабочих 5 человек. Тогда удельный вес их в общей численности составит:

W = 5/10 = 0,5

Рассчитаем предельную ошибку доли в случае механического отбора по формуле:

где w-удельный вес рабочих, у которых выработка выше средней;

n-объем выборочной совокупности;

t - коэффициент доверия (t=3 для вероятности 0,997).

=3*0,15=0,45 или 45%

Найдем границы изменения доли в генеральной совокупности:

p=w±Дp

p=0,5±0,45

0,5-0,45<Р<0,5+0,45;

0,05 <Р< 0,95

5%<Р<95%

Вывод:

С вероятностью 0,997 можно утверждать, что удельный вес рабочих, у которых выработка выше средней, колеблется от 5% до 95%. В генеральной совокупности.

3. Рассчитаем необходимую численность рабочих:

n= (t2*Vу2): Д2,t- коэффициент доверия (для вероятности 99,7% равен 3);

Vу- коэффициент вариации (12,627% - результат решения задачи 4);

Д2- относительная погрешность, %; (по условию задачи равна 5%).

n=9* (12,627) 2/25=57,399 ? 58 чел.

С вероятностью 99,7% можно утверждать, что численность выборки, обеспечивающая относительную погрешность не более 5%, должна составлять не менее 58 чел.

Задача 7

Имеются данные о стаже работы рабочих и их выработке (приложения А, графа *, Б-графа *).

Составьте линейное уравнение регрессии, вычислите его параметры, рассчитайте коэффициенты корреляции и эластичности. По полученному уравнению регрессии рассчитайте теоретические (выравненные) уровни. Результаты расчетов оформите в виде таблицы. Сделайте выводы.

РЕШЕНИЕ:

Уравнение связи в случае линейной зависимости имеет вид:

ух01х

Параметры уравнения а0 и а1 определяют методом наименьших квадратов. Для этого необходимо решить систему уравнений:

na0+a1?x=?y;

a0 ?x+ a1?x2=?xy.

Расчет необходимых данных выполним в табл.6

Подставим полученные данные в систему ур и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.