На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


курсовая работа Автоматизация печи

Информация:

Тип работы: курсовая работа. Добавлен: 09.09.2012. Сдан: 2012. Страниц: 13. Уникальность по antiplagiat.ru: < 30%

Описание (план):


     СОДЕРЖАНИЕ 

ВВЕДЕНИЕ
    ВСТУПЛЕНИЕ
    Конструкция агрегата и технологический процесс
    методическая печь как объект автоматизации
    общие задачи автоматизации
    разработка и описание структурной схемы автоматизации
    РАЗРАБОТКА И ОПИСАНИЕ ФУНКЦИОНАЛЬНОЙ СХЕМЫ АВТОМАТИЗАЦИИ
    РАЗРАБОТКА И ОПИСАНИЕ ПРИНЦИПИАЛЬНОЙ ЭЛЕКТРИЧЕСКОЙ СХЕМЫ КОНТУРА КОНТРОЛЯ И РЕГУЛИРОВАНИЯ
    МАТЕМАТИЧЕСКАЯ МОДЕЛЬ НАГРЕВА МЕТАЛЛА В МЕТОДИЧЕСКОЙ ПЕЧИ
    Инструкция по пользованию программой
ВЫВОДЫ
СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ
Приложение  А 

 

      Введение 

     Нагрев металла является важнейшей технологической операцией, в значительной мере определяющей экономические показатели производственного процесса в целом. Технология прокатки предъявляет жесткие требования к качеству нагрева. Распределение температур по сечению заготовки, обеспечивающее необходимую пластичность металла, должно быть достигнуто за определенное время без чрезмерного перегрева поверхности металла. Нагревательные устройства должны обеспечить кондиционный нагрев металла в условиях переменного ритма работы стана и при минимальном расходовании топлива. Качество нагрева определяется избранным графиком нагрева металла, т. е. скоростью и продолжительностью нагрева в каждой из зон печи. Каждому графику нагрева соответствуют конечная температура поверхности металла, неравномерность температур по сечению заготовки и величина угара металла. В современных методических печах кривая, характеризующая распределение температур по длине печи, круто поднимается на участке, соответствующем загрузочному концу печи, и становится пологой на участке, соответствующем высокотемпературной зоне ее.
     Соблюдение  такого графика обеспечивается высокой  температурой отходящих газов. Применение его особенно целесообразно при  нагреве толстых заготовок, так  как теплопроводность металла уменьшается с повышением его температуры. С повышением температуры в сварочной зоне трехзонных печей необходимое время выдержки в томильной зоне часто удлиняется в большей степени, чем сокращается время нагрева в методической и сварочной зонах. Поэтому оптимальное значение температуры сварочной зоны, соответствующее нагреву металла до заданных кондиций, соответствует в первую очередь, заданной неравномерности температур по сечению заготовки.
 

    ЛИТЕРАТУРНЫЙ ОБЗОР
 
     В прокатных цехах заканчивается  цикл металлургического производства. Процесс получения готового прокатного изделия обычно разбивается на несколько этапов: вначале слиток прокатывают на крупных обжимных и заготовительных станах до заготовки, которую затем для получения готового профиля передают на сортовые, листопрокатные или специальные (колесопрокатные, трубопрокатные и др.) станы.
     Качество  продукции и производительность прокатных станов во многом определяются работой нагревательных печей, причем в большинстве случаев ошибки, возникающие при нагреве металла, уже не могут быть исправлены. Проявляясь на последующих переделах, эти ошибки приводят к снижению выхода годной продукции.
     Нагревательные  печи прокатного производства предназначены  для нагрева слитков перед  прокаткой на обжимных станах и заготовок (слябов и блюмов) – перед листовыми и сортовыми станами.
     Являясь начальным звеном технологической  линии прокатного производства, нагревательные печи в своей работе тесно связаны  с ритмом работы прокатного оборудования, и наряду с этим сохраняют особенности, присущие всем теплотехническим агрегатам. Основное время печи работают в переходных режимах, вызванных изменением сортамента, марки нагреваемых заготовок и темпа их выдачи. В прокатном производстве для нагрева металла перед прокаткой используются в основном три вида нагревательных печей: нагревательные колодцы, методические и секционные.
     Современные нагревательные печи представляют собой  высокомеханизированные агрегаты, удовлетворяющие  технологическим и экологическим  требованиям, однако жизнь выдвигает  новые задачи развития печной техники.
     Требования  к работе нагревательных печей включают в себя:
    обеспечение заданной производительности;
    обеспечение качества нагрева, удовлетворяющего технологов по структуре и по механическим свойствам металла, по степени окалинообразования и обезуглероживания;
    эффективное использование топлива, характеристикой которого служит удельный расход энергии на единицу продукции в кг условного топлива на 1 тонну продукции;
    соответствие экологическим нормам по предельно допустимому выбросу в атмосферу пыли и вредных газов: СО, СО2, NOx, SO2, C20H12 и других углеводородов;
    механизация труда при эксплуатации и ремонте печи и автоматизация её теплового режима.
     Интегральным  экономическим показателем технологии нагрева и конструкции печи является себестоимость нагрева и срок окупаемости капиталовложений в строительство или реконструкцию печи при гарантированном качестве продукции и соответствии экологическим нормам.
     В настоящее время производительность печи является варьируемым фактором. Одну и ту же производительность можно обеспечить при работе одной или нескольких печей. Существует понятие оптимальной производительности печи, соответствующей минимуму расхода энергии на нагрев металла, либо минимуму себестоимости нагрева.
     На  передний план выдвигается требование эффективного использования топлива и других ресурсов, т.е. проблема энерго- и ресурсосбережения. В связи с этим меняется актуальность научных проблем. Например, утратила своё значение задача интенсификации теплообмена в печах, как средство повышения скорости нагрева, а, значит, и производительности нагревательных печей. Скоростной нагрев и высокая производительность сегодня не являются самоцелью, поскольку промышленной практике нужны не рекорды, а экономическая целесообразность.
     Из  анализа теплового баланса печи, записанного в форме, предложенной И.Д.Семикиным, следует вывод о том, что возможны три направления энергосбережения:
    уменьшение теплового дефицита металла Дi, т.е. количества теплоты, которое должен поглотить 1 кг металла в печи, чтобы нагреться от начальной до конечной температуры;
    уменьшение потерь теплоты из рабочего пространства печи через футеровку и окна в окружающую среду, а также на разогрев футеровки до рабочей температуры;
    повышение коэффициента использования теплоты топлива (КИТ), т.е. доли теплоты сгорания топлива, которую удается использовать в пределах рабочего пространства печи. Расход топлива на печь обратно пропорционален величине КИТ.
     Рассмотрим  конкретные способы реализации каждого из трёх направлений энергосбережения в современных печах металлургии и машиностроения.
     1 способ. Уменьшение Дi достигается  на практике путем повышения  начальной температуры металла  при посаде его в печь. Так  называемый "горячий посад"  возможен при сохранении в  металле теплоты, полученной им в предыдущем переделе, в том числе теплоты кристаллизации слитков. Применяемая на комбинате "Запорожсталь" технология посада в нагревательные колодцы слитков с незатвердевшей сердцевиной обеспечивает, по свидетельству комбината, сокращение удельного расхода топлива на 40%, с 51,7 до 30,7 кг условного топлива на тонну слитков. Подобные результаты получены на комбинате "Криворожсталь". Согласно расчетам, в момент посада слитков в колодцы примерно 30% их объема занимает жидкая сердцевина.
     Необходимо  как можно меньше охлаждать заготовки, полученные на МНЛЗ, перед посадом в нагревательные печи для последующей прокатки. Примером осуществления такой энергосберегающей технологии являются литейно-прокатные модули.
     В ряде случаев удаётся вообще исключить  промежуточный нагрев металла между двумя последовательными прокатными станами, т.е. довести тепловой дефицит до нуля благодаря уменьшению потерь теплоты раскатами при транспортировке от одного стана к другому. На комбинатах "Запорожсталь" и им. Ильича внедрена технология "транзитной" прокатки слябов на непрерывных листовых станах, при которой 95% слябов прокатываются без промежуточного нагрева в методических печах. В данном случае удельный расход условного топлива в методических печах сокращен с 85 до 15 кг/т.
     Уменьшить Дi можно также путем снижения температуры нагрева металла в печи. Однако надо учитывать, что это повлечет за собой не только уменьшение расхода топлива, угара и обезуглероживания металла, но и увеличит расход электроэнергии на прокатку и, вероятно, сократит срок службы прокатных валков. Таким образом, выбор температуры нагрева заготовок представляет собой задачу оптимизации по минимуму всех затрат на процессы нагрева и прокатки.
     2 способ. Потери теплоты из рабочего  пространства имеют место в  любых печах, но они особенно существенны в нагревательных и термических печах циклического действия, когда в цикл термообработки входит охлаждение печи до низкой температуры или когда такое охлаждение обусловлено длительными промежутками между циклами нагрева садки. Футеровка таких печей, выполненная из шамотного кирпича, поглощает примерно в 3 раза больше теплоты, чем садка металла. Уменьшение количества теплоты на разогрев футеровки достигается путем замены шамотных огнеупоров муллитокремнеземистыми волокнистыми плитами, производство которых налажено на Украине и в России.
     В проходных печах с шагающими  балками благодаря применению волокнистых  материалов для тепловой изоляции стен и водоохлаждаемых балок в  сочетании с бетонной оболочкой  потери теплоты из рабочего пространства сокращают до 3-5% от тепловой мощности печи.
     3 способ. Для повышения КИТ применяют следующие мероприятия:
    снижение температуры уходящих газов в методических и кольцевых печах путем теплообмена с металлом в неотапливаемой зоне;
    уменьшение объема продуктов сгорания на единицу топлива с помощью обогащения воздуха кислородом, путем повышения теплоты сгорания топлива, а также путем полного сжигания топлива при минимальном избытке воздуха;
    уплотнение рабочего пространства и регулирование давления газов в печи с целью устранения подсосов атмосферного воздуха.
     Однако  наиболее эффективным средством  повышения КИТ и экономии топлива  является утилизация теплоты уходящих из печи газов, в частности, путем  нагрева воздуха и газообразного  топлива в рекуператорах или регенераторах.
     В рекуператорах доля теплоты, передаваемой воздуху по отношению к теплоте  уходящих дымовых газов, составляет 30-40%. Остальная часть теплоты выносится в атмосферу.
     На  печах большой мощности устанавливают  энергетические котлы-утилизаторы. Однако присущая нагревательным печам работа с переменной производительностью создает ненормальные условия для эксплуатации дорогостоящих котлов-утилизаторов.
     Причины низкой эффективности существующих рекуператоров таковы:
    температура дымовых газов перед металлическим рекуператором не может быть выше 900-1000°С по условиям его долговечности;
    фактически температура дыма на входе в рекуператор значительно ниже в результате подсоса холодного воздуха в дымовой канал за печью, поэтому температура подогрева воздуха (либо газа) не превышает 300-400°С;
    керамические рекуператоры способны подогреть воздух до более высокой температуры, однако они громоздки и негерметичны. Утечки воздуха через неплотности достигают 50%, в результате чего снижается тепловая мощность печи и нарушается регулирование горения.
     Перспективным направлением развития конструкций  нагревательных печей в XXI веке является применение для утилизации теплоты  печных газов малогабаритных, в частности, шариковых регенераторов. Регенеративные печи нового типа получают распространение в мире по мере накопления опыта их эксплуатации. Насадка малогабаритных регенераторов, применяемых в промышленных нагревательных печах, состоит из корундовых окатышей диаметром 20-25 мм, содержащих 98% Al2O3. Поверхность нагрева 1 м3 такой насадки в 10-15 раз больше, чем кирпичной насадки типа Сименс. Поэтому шариковый регенератор имеет небольшие габариты и может устанавливаться в стенах печи или в так называемой регенеративной горелке. Чтобы возвратить в печь с нагретым воздухом и, при необходимости, с газом как можно больше теплоты, уносимой дымом, насадка регенератора не должна прогреться по всей высоте, поэтому через 1-3 минуты делают перекидку клапанов – дымовоздушных и газовых, при этом температура дыма на выходе из регенератора не превышает 150-200°С.
     Шариковые регенераторы возвращают в печь 85-90% теплоты уходящих из печи газов. Температура  подогрева воздуха примерно на 100°С ниже температуры дыма на выходе из печи. Расход топлива на печь сокращается  в 1,5-2,0 раза. Наибольший эффект относится к печам, не имевшим рекуператоров. Перевод действующих печей на регенеративное отопление требует установки дымососа для преодоления аэродинамического сопротивления шариковой насадки.
     В 2003 году на Украине введена в эксплуатацию первая нагревательная печь с шариковыми регенераторами. На комбинате "Криворожсталь" реконструирован типовой рекуперативный нагревательный колодец с отоплением из центра подины, в результате чего трубчатые керамические рекуператоры заменены шариковыми регенераторами для подогрева воздуха. Корундовые шарики изготавливаются Белокаменским огнеупорным заводом (Украина). Реконструкция выполнена с минимальным изменением существующей кладки колодца.
     Для переключения регенераторов с дыма на воздух и с воздуха на дым  через каждые 3 минуты служит один перекидной клапан.
     Новизна конструкции состоит в том, что  имеется по-прежнему одна постоянно  включенная горелка в центре подины вследствие чего отсутствует перекидной газовый клапан, характерный для регенеративных печей.
     Методические печи используются для нагрева металла перед прокаткой на листовых и сортовых станах. Методические печи относятся к печам непрерывного действия. Металл в своем движении последовательно проходит зоны печи: методическую (не отапливаемая зона предварительного нагрева); сварочную, в которой осуществляется быстрый нагрев металла; и томильную, где происходит выравнивание температур по сечению заготовки.
     Достоинствами методических нагревательных печей являются непрерывный характер работы и относительно стабильный благодаря этому тепловой режим. Непрерывный характер работы методических печей облегчает автоматическое регулирование теплового режима.
     В условиях нагрева заготовок с  переменными геометрическими и  теплотехническими параметрами, а  также при переменном темпе выдачи заготовок из печей получение требуемого качества нагрева заготовок возможно лишь при автоматическом управлении работой участка нагревательных печей. Печи различаются по конструкции, но, тем не менее, у всех печей есть много общего в схемах автоматического контроля и регулирования.
     Автоматически контролируются следующие параметры: температура (рабочего пространства в  одной или нескольких точках; продуктов  сгорания перед и после рекуператора и перед дымососом; подогретых воздуха  и газа; первой секции металлических рекуператоров); расход (топлива на печь и по зонам отопления; воздуха; охлаждающей воды, если имеются водо-охлаждаемые детали); давление (в рабочем пространстве печи; газа и воздуха); разрежение в одной или нескольких точках дымового тракта.
     Автоматически регулируются: температура в зонах  рабочего пространства; давление в  рабочем пространстве; качество сжигания топлива.
     Для оповещения персонала о нарушениях в работе и автоматического отключения печи при возникновении аварийных  ситуаций предусматривается система звуковой и световой сигнализации и отключения газа и воздуха на печь. Отсечка подачи газа и воздуха к горелкам осуществляется при падении давления одного из компонентов горелки и отключении питания приборов КИПиА.
     Наиболее  сложным вопросом управления нагревательными печами является определения законченности процесса нагрева заготовки. Если определить температуру поверхности еще возможно, то задача определения нагрева центра заготовки является сложной и неразрешимой в промышленном масштабе. Сейчас наиболее эффективно использовать математическую модель нагрева слитка по данным которой управлять процессом нагрева. Для оценки адекватности модели необходимо проводить эксперименты на заготовках и периодически адаптировать ее под текущие производственные условия.
     Тепловые  процессы, протекающие в нагревательных печах, крайне многообразны. Процессы горения, движения газов, теплообмена, протекающие при высоких температурах сложны и неразрывны. Поэтому исследование теплообмена и его математическое описание представляет собой крайне трудную задачу, решение которой имеет важное теоретическое и практическое значение. Для выработки надежного режима работы необходимы многочисленные экспериментальные исследования на действующих печах. Однако экспериментальное изучение теплообмена в высокотемпературных печах весьма затруднено. Такие эксперименты как измерение тепловых потоков в различных точках по длине и ширине печи, температуры факела и кладки, продвижение через печи сляба с размещенными в нем термопарами и ряд других могут выполняться лишь единично из-за сложности их, что не может обеспечить изучения многочисленных вариантов изменения режимных параметров печей. В таких условиях незаменимым становится математическое моделирование, требующее выполнения двух непременных условий: наличия возможности более точной математической модели процесса в обязательной строгой адаптации модели на действующем агрегате. Адаптация математической модели также требует сложных экспериментов на печах, однако, не столь многочисленных, как при эмпирическом исследовании в печах. Строго адаптированная математическая модель позволяет с использованием компьютера проанализировать практически любое число вариантов, чего совершенно невозможно сделать при эмпирическом методе исследования, и выбрать оптимальные условия тепловой работы печей для нагрева того или иного металла. При создании моделей методических печей встречается ряд трудностей, связанных со сложностью протекающих процессов и с недостаточной изученностью многих из них.
     Методическая печь состоит из нескольких зон, ни одну из которых нельзя рассматривать автономно. Даже первая по ходу газов — томильная зона находится в состоянии теплообмена с последующей сварочной зоной. Все зоны (кроме томильной) испытывают на себе влияние других зон не только в результате протекания процессов взаимного теплообмена, но и в результате перехода продуктов сгорания из предыдущей зоны в последующую. Недостаточная изученность процессов тепловыделения в пламени и теплоотдачи от пламени, усиленных влиянием приходящих из других зон продуктов сгорания, крайне затрудняет решение вопроса о температуре в каждой зоне, которая может изменяться не только по длине, но по ширине и высоте печи. Все это делает решение по выбору температуры весьма приближенным. Очень часто температуры в томильной и сварочных зонах принимаются постоянными.
     В методических печах преобладающим (80%) является теплообмен излучением. Подавляющее  большинство компонентов теплообмена  излучением в рабочем пространстве печей имеет селективные радиационные свойства, которые должны быть учтены при расчете теплообмена, что также создает большие математические трудности.
     В процессе нагрева металл подвергается окислению, причем по мере продвижения  металла к торцу выдачи толщина  слоя окалины увеличивается. Окалина представляет собой прежде всего значительное тепловое сопротивление: установлено, что перепад температуры в слое окалины достигает 100 С и более. Но этим влияние окалины на процесс нагрева не ограничивается. Окалина имеет отличные от металла радиационные свойства (спектральные степень черноты и поглощательную способность), что также оказывает влияние на теплообмен излучением.
     В методических печах предприятий  черной металлургии нагреву поддаются  более двух с половиной тысяч  различных марок сталей, каждая из которых характеризуется своими величинами теплопроводности и теплоемкости, зависящими от температуры. Это крайне усложняет математическую модель, для многочисленных марок сталей.
     В соответствии с уравнением энергетического  баланса существует три уровня потребления энергии. Первый уровень характеризуется эффективным поглощением тепла слябом в процессе нагрева, и составляет 60 % общей энергии. Во втором уровне нагрев происходит за счет сгорания топлива, составляя 20 - 30 %. Во время третьего уровня, тепло поглощается за счет излучения поверхности и других утечек энергии, обусловленных структурой печи. Таким образом, температура уходящих продуктов сгорания является переменной, контролирующей расход энергии.
     Существуют  два вида потерь энергии, причиной которых является уходящие продукты сгорания топлива и потери тепла, связанные с неполным сгоранием топлива. Следовательно, схема исследования сохранения энергии включает уменьшение температуры уходящих продуктов сгорания и повышение эффективности сгорания топлива.
     Таким образом, нагревательные печи металлургии  и машиностроения сегодня и в  ближайшем будущем должны обеспечивать:
    высокую равномерность и стандартность нагрева изделий на основе управления процессами движения газов и сжигания топлива;
    глубокую утилизацию теплоты уходящих газов на уровне КИТ = 85- 90%, в частности с применением малогабаритных регенераторов для нагрева воздуха и, в случае необходимости, газообразного топлива с соблюдением экологических требований;
    минимальные потери теплоты на разогрев футеровки и через элементы конструкции печей в окружающую среду путем использования огнеупорных и теплоизоляционных волокнистых изделий;
    малоокислительный режим нагрева со снижением потерь металла в окалину до 0,5% массы нагреваемых изделий.
     Актуальным научным направлением развития нагревательных печей является разработка новых горелочных устройств для объемного сжигания топлива с высокотемпературным воздухом, а также систем отопления нагревательных и термических печей с малогабаритными регенераторами. 

     
    Конструкция агрегата и технологический  процесс
 
     Методическая  печь — это агрегат непрерывного действия для нагрева металла  перед его прокаткой или ковкой. В данном проекте рассматривается методическая печь стана 3000 комбината имени Ильича.
     Нагрев  слябов производится в нагревательных семизонных печах с шагающими балками, с двухсторонним нагревом, с торцевым посадом и выдачей.
     Печь  имеет 7 технологических зон, в том  числе, первая зона объединяет верхние и нижние горелки у торца загрузки перед дымоходом. Далее по ходу металла расположены 3 зоны сверху (3,5,7) и 3 зоны снизу (2,4,6).
     Печь  по длине имеет 4 участка. Первый со стороны загрузки – методическая зона имеет одну зону подачи топлива. Далее по ходу металла участок форсированного нагрева слябов имеет две зоны подачи топлива – верхняя (зона 3) и нижняя (зона 2). Третий участок нагрева слябов до конечной температуры поверхности имеет верхнюю (зона 5) и нижнюю (зона 4) – зоны подачи топлива. Последняя, четвертая, ближе к стороне выдачи – томильный участок, имеет верхнюю (зону 7) и нижнюю (зону 6) подачи топлива.
     Рассмотрим  назначение зон. Методическая зона (первая по ходу металла) – характеризуется изменяющейся по длине температурой. В этой зоне металл постепенно подогревается до поступления в зону высоких температур (сварочную) во избежание возникновения чрезмерных термических напряжений. Тут осуществляется медленный нагрев металла в интервале температур от 0 до 500єC, что особенно важно для высококачественных легированных сталей. Вместе с тем методическая зона представляет собой противоточный теплообменник. Находящиеся в состоянии теплообмена дымовые газы и металл движутся навстречу друг другу. Металл нагревается дымовыми газами, т.е. утилизирует тепло дымовых газов, отходящих из зон высоких температур. Общее падение температуры дымовых газов в методической зоне весьма значительно. Обычно в зоне высоких температур методических печей температура газов держится на уровне 1300-1400єC, в конце же методической зоны она находится в пределах 850-1100єC. Методическая зона значительно увеличивает коэффициент использования топлива, который достигает 40-45%.
     Следующие по ходу металла – сварочные зоны или зоны высоких температур. В этих зонах осуществляется быстрый нагрев поверхности заготовки до конечной температуры. Для интенсивного нагрева поверхности металла в сварочных зонах необходимо обеспечивать температуру на 150-250єC выше, чем температура металла на выход из печи.
     Томильная зона (зона выдержки) – последняя по ходу металла. Она служит для выравнивания температур по сечению металла. В сварочных зонах до высоких температур нагревается только поверхность металла. В результате создается большой перепад температур по сечению металла, недопустимый по технологическим требованиям. Температуру в томильной зоне поддерживают всего на 30-50єC выше необходимой температуры нагрева металла. Поэтому температура поверхности металла в томильной зоне не меняется, а происходит только выравнивание температур по толщине заготовки.
     Транспортирование слябов в печи осуществляется шагающим подом. Дымоудаление производится через свод между первой и третьей зонами дымососом.
     Режим работы – непрерывный. Заготовки к печам подаются загрузочным рольгангом и фиксируются в определенном положении перед печью, а затем сталкивателем сдвигаются на неподвижные балки печи. Нагретые слябы выдаются с помощью машины безударной выдачи с нижним приводом.
     Данная  печь обеспечивает нагрев металла до температуры 1050-1120єC для сталей типа 06-14 Г2САФБ, 1150-1250єC для конструкционных сталей типа сталь 15-40.
     Путем изменения расходов топлива и воздуха на группу горелочных устройств обеспечивается возможность управления мощностью и режимом сжигания топлива в каждой отапливаемой зоне печи. Отопление печей осуществляется природным газом с помощью двухпроводных горелок типа ДВБ с принудительной подачей газа и воздуха.
     Давление  газа перед печью составляет 10 кПа, перед горелками – 3 кПа. Давление воздуха соответственно 4 и 2 кПа.
     Максимальный  расход газа на печь – 17000 м3/час. Максимальный расход воздуха для сжигания топлива – 190000 м3/час.
     Воздух  в печь подается при помощи вентиляторов холодного дутья через металлический  рекуператор, где он подогревается  до 350-400єС.
     Продукты  сгорания удаляются из рабочего пространства через расположенный над печью  котел-утилизатор со встроенным в него рекуператором, и далее через дымососы на дымовую трубу.
     Участок печей должен обеспечить нагрев металла (слябов) перед прокаткой от исходного  холодного состояния до температур, обусловленных технологическими требованиями процесса прокатки, и поштучную выдачу слябов на стан в моменты времени, определяемые темпом работы прокатного оборудования. В методической печи нагреваются слябы из различных сталей и разных размеров. Размеры слябов приведены в таблицах 2.1 и 2.2.
     На  нагрев слябы поступают холодными. Температура нагрева слябов перед выдачей из печи составляет 1050-1100єС.
     Перепад температур по сечению нагретого  металла 20єС.
     Тепловой  режим печей регулируется в соответствии с темпом прокатки и обеспечивает равномерный прогрев металла  без оплавления окалины.
     Давление  в печном пространстве весь период нагрева металла поддерживается положительным в пределах 4-5 Па. 

     Таблица 2.1 – Размеры непрерывно-литых слябов
    Измерение Линейный размер, мм Предельные  отклонения размера, мм
    Толщина 200-315 2.5
    Ширина 1250-1900 -5...+10
    Длина 2500-2800 0...+20
 
 

      Таблица 2.2 – Размеры катаных слябов
    Измерение Линейный размер, мм Предельные  отклонения размера, мм
    Толщина 100-145 150-240
    4 5
    Ширина 1100-1550 10
    Длина 2500-2800 50...-30
 
     
    методическая  печь как объект автоматизации
 
     Методические  печи, применяемые для нагрева  заготовок перед листопрокатными  станами, наиболее распространены в  металлургическом производстве.
     В печах этого типа нагревают обычно заготовки толщиной 60-400 мм, шириной 60-1850 мм и длиной от 1000 до 12000 мм, масса которых составляет от 50 до 40000 кг.
     Одной из основных особенностей методических печей является противоточное движение в них газов и металла.
     Нагревательный  металл толкателем перемещается по водоохлаждаемым  трубам. Топливо сжигается с помощью горелок, расположенных над и под поверхностью металла. Продукты сгорания двумя потоками – верхним и нижним движутся вдоль рабочего пространства печи в направлении, противоположном движению металла, т.е. противотоком. Через дымовые каналы продукты сгорания удаляются в боров и из него через рекуператор и дымовую трубу в атмосферу. Нагретый металл через окно выдачи попадает на рольганг и по нему к стану.
     Тепловой  и температурный режимы работы методических печей неизменны во времени. Вместе с тем температура в методических печах значительно меняется по длине печи. Характер изменения температуры, зависящий от требуемого графика нагрева металла, определяет как количество и назначение зон печи, так и режим теплообмена в каждой из них. Холодный металл поступает в зону наиболее низких температур и, продвигаясь навстречу дымовым газам, температура которых все время повышается, постепенно (методически) нагревается.
     Первая (по ходу металла) зона имеет изменяющуюся по длине температуру и называется методической зоной. Сжигания топлива в этой зоне не производится. В ней металл постепенно подогревается до поступления в отапливаемую зону высоких температур (сварочную зону).
     Во  избежание возникновения чрезмерных термических напряжений необходим  медленный нагрев массивных тел, в интервале температур от 0 до 500° С. Постепенный нагрев металла в методической зоне обеспечивает такую скорость нагрева, при которой не возникает недопустимого перепада температур по сечению заготовки.
     Вторая (по ходу металла) зона называется зоной высоких температур или сварочной зоной. Назначение этой зоны – быстрый нагрев поверхности заготовки до конечной температуры, составляющей 1150 - 1250 °С. Для интенсивного нагрева поверхности металла до этих температур в сварочной зоне необходимо обеспечивать температуру на 150 - 250 °С и выше.
     Третья (по ходу металла) томильная зона (зона выдержки) служит для выравнивания температуры по сечению металла  и ликвидации холодных пятен на нижней поверхности заготовок. В сварочной  зоне до высоких температур нагревается только поверхность металла; температура средних слоев металла, естественно, значительно меньше температуры поверхности, т.е. создается перепад температур по сечению металла, недопустимый по технологическим требованиям. В томильную зону металл поступает с этим перепадом температур по толщине. Температуру в томильной зоне поддерживают всего на 50 – 70°С выше необходимой конечной температуры нагрева металла. Поэтому температура поверхности металла в томильной зоне практически не меняется и поддерживается на достигнутом в сварочной зоне уровне; происходит только выравнивание температуры по толщине металла в условиях равномерно распределенного радиационного режима внешнего теплообмена.
     При регулировании тепловым режимом  методической печи температуру заготовок на выходе из печи выбирают с учетом ее влияния на условия нагрева металла, на прокатку и качество проката: чем выше температура на выходе из печи, тем, как правило, больше пластичность металла, меньше усилие и расход электроэнергии, затрачиваемые на его деформацию при прокатке, меньше износ и риск повреждения прокатного оборудования, т.е. с ростом температуры на выходе из печи условия прокатки становятся более благоприятными. Требуемая по условиям прокатки температура на выходе тем выше, чем ниже мощность привода клетей прокатного стана, больше расстояние от методической печи до стана и больше необходимое обжатие.
     Обычно  желательно, чтобы температура заднего  конца заготовки превышала температуру  переднего конца, так как задний конец в течение большего времени находится в прокатке и, следовательно, в большей степени охлаждается до окончания прокатки. Требуемое распределение температуры по длине заготовки зависит от скорости прокатки. Так, для прокатных станов старой конструкции было желательно, чтобы температура заднего конца сляба на 30° С превышала температуру переднего конца. На современных станах, работающих с большми скоростями прокатки, достаточен меньший перепад.
     Тепловой  режим печи зависит от производительности, скорости перемещения металла вдоль печи, так как методическая печь работает в одной поточной линии с прокатным станом и скорость перемещения металла зависит от темпа прокатки, который в течение коротких отрезков времени может колебаться в широких пределах вплоть до остановок стана, когда скорость перемещения металла становится равной нулю.
     Колебания скорости движения металла приводят к изменению времени, за которое  заготовки проходят тот или иной участок печи, а следовательно, и  к изменению количества тепла, полученного  ими на этом участке, если температура в зоне остается постоянной. При замедлении темпа прокатки и особенно при остановках стана это приводит к перегреву металла вплоть до сваривания заготовок, к увеличению угара и расхода топлива, а при увеличении темпа – к недогреву металла, к остановкам стана в связи с отсутствием нагретого металла.
     Таким образом, при переменной производительности методической печи автоматическая стабилизация температуры в зонах не обеспечивает требуемый нагрев металла. В этом случае система управления должна определятъ скорость продвижения металла и при ее изменении автоматически изменять температурный режим печи таким образом, чтобы обеспечить требуемый нагрев металла в каждой зоне. Системы, реализующие такое управление, сравнительно просты, и их целесообразно использовать на всех методических печах.
     Требуемый температурный режим в методической печи зависит от скорости продвижения  металла. В связи с этим были созданы  каскадные системы автоматического  управления температурным режимом  методических печей. Каждая такая система включает локальные САР температуры в зонах отопления и управляющее устройство, которое определяет скорость продвижения металла и при ее изменении автоматически изменяет (корректирует) задания локальным регуляторам температуры таким образом, чтобы обеспечить требуемый нагрев металла в каждой зоне. Эти системы различаются главным образом тем, какой параметр использован в них в качестве меры скорости продвижения металла или темпа прокатки.
     Первоначально в качестве такого параметра выбирали температуру в методической зоне печи или температуру отходящих газов, так как увеличение скорости продвижения металла приводит к снижению этих температур, а уменьшение скорости – к их росту. Однако от этого информационного сигнала пришлось отказаться, так как указанная зависимость имеет место только при постоянном температурном режиме в зонах отопления. Если же температуры в зонах изменяют, например, в связи с изменением темпа прокатки, то эта зависимость становится неоднозначной и существенно различной при переходном и установившемся режимах.
     Более контролируемым параметром является температура  поверхности металла, измеряемая радиационным пирометром примерно в середине методической зоны. Между этой температурой и  скоростью продвижения металла  также существует обратная зависимость, которая более устойчива. В этих системах сигнал выходного датчика потенциометра, работающего в комплекте с радиационным пирометром, преобразуется и поступает на вход регуляторов температуры сварочных зон, изменяя задание на требуемую величину.
     Основной  задачей является получение металла  с заданной температурой поверхности  и допустимым по условиям прокатки перепадом температур по сечению. Выполнить  это при постоянной производительности печи и одинаковых параметрах загружаемого металла нетрудно. Для этого достаточно стабилизировать температуру в зонах.
     Однако  методические печи работают в условиях, далеких от установившихся: меняется производительность печи, определяемая работой прокатного стана и соседних печей, изменяется температура, размеры, марка загружаемого металла. Поэтому основной задачей управления процессом нагрева является выработка такого температурного режима печи, чтобы все время получать заданное качество нагрева в условиях переменной производительности агрегата с учетом других возмущений. Управляющим воздействием является расход топлива на зону, определяющий температуру в ней.
     Температура рабочего пространства
     Основным  направленно изменяемым параметром при управлении нагревом металла  является температура рабочего пространства. Именно она в первую очередь определяет теплоотдачу металлу, распределение температур в его массе, интенсивность окалинообразования, износ конструкций печи и другие важнейшие параметры, характеризующие процесс тепловой обработки металла и работу агрегата. Измеренная температура является главным источником информации о тепловом состоянии отдельных зон и всей печи в целом. На основе этой информации составляют инструкции по нагреву, выполняют тепловой расчет зон, рассчитывают нагрев металла, задают температурный профиль печи, осуществляют управление тепловым и температурным режимами. Достоверность результатов решения перечисленных задач в первую очередь зависит от того, какая величина принята в качестве температуры рабочего пространства, где и как она измерена.
     Методическая  печь, как и любая её зона, является объектами с распределёнными  параметрами. При этом каждой точке печного пространства присуща своя температура, которая и определяет тепловой поток из этой точки на выбранный элемент поверхности металла. Подвод тепла к этой поверхности осуществляется вследствие излучения факела, продуктов горения, стен и свода, а также конвекции. Конвективная составляющая существенна лишь в методической зоне при высоких скоростях продуктов горения, обеспечиваемых многократной принудительной рециркуляцией, создаваемой специально установленными вентиляторами. Для высокотемпературных зон можно с достаточной точностью считать, что металл получает тепло только путём излучения.
     Задачей локальной системы является обеспечение заданной температуры рабочего пространства в зоне отопления путём соответствующего изменения ее тепловой нагрузки.
     Изменение тепловой нагрузки зон, оборудованных  инжекционными горелками, осуществляется путём изменения расхода топлива при воздействии на общую поворотную заслонку на зональном газопроводе. Соответствующее изменение расхода воздуха горения достигается автоматически изменением режима работы горелок.
     Для зон, оборудованных дутьевыми горелками, изменение тепловой нагрузки может  быть осуществлено либо изменением расхода топлива с последующим изменением расхода воздуха, либо изменением расхода воздуха с последующим изменением расхода топлива. Второй способ имеет то преимущество, что при недостатке воздуха горения исключается возможность подачи в зону излишнего количества топлива, полное сгорание которого может произойти в следующей зоне или рекуператоре. Как недостаток этого способа часто указывают на дальнейшее увеличение, в первый момент регулирования, отклонения температуры от заданного значения. Однако значительная инерционность датчиков температуры рабочего пространства не дает проявляться этому недостатку. Гораздо более сильное влияние оказывают люфты в сочленениях исполнительных механизмов с поворотными заслонками на зональных воздухопроводах, приводящие к снижению запаса устойчивости системы регулирования. Кроме того, при высокой температуре воздуха заслонки часто заклинивает, поэтому наибольшее распространение на методических печах получили системы, реализующие первый способ – в котором ведущим является топливо. Такие системы позволяют обеспечить с приемлемой точностью поддержание заданной температуры рабочего пространства даже при выходе из строя заслонок на воздухопроводах. Возникающие при этом нарушения в работе систем регулирования соотношения топливо – воздух не препятствуют регулированию температуры.
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.