На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


курсовая работа Внешние запоминающие устройства ПК

Информация:

Тип работы: курсовая работа. Добавлен: 09.09.2012. Сдан: 2012. Страниц: 10. Уникальность по antiplagiat.ru: < 30%

Описание (план):


Федеральное агентство по образованию РФ
Нижегородский государственный университет им. Н.И. Лобачевского
 Финансовый  факультет
 Дневное  отделение
 Специальность  «Налоги и налогообложение» 
 

КУРСОВАЯ  РАБОТА
по дисциплине Информатика
на тему: «Внешние запоминающие устройства ПК» 
 
 
 
 

             Выполнила:
                       Студентка гр.13108-Н
                    Власова Юлия Евгеньевна  

                       Руководитель:
                    Назарова  Евгения Вадимовна 
                     
                     
                     

Нижний  Новгород
2010
СОДЕРЖАНИЕ
Введение………………………………………………………………………...3
    Глава I: история……………………………………………………………..6
    Глава II:
      Накопители на магнитной ленте……………………………………….9
      Накопители прямого доступа…………………………………………...11
      Накопитель на гибких магнитных дисках (НГМД – дисковод)…...12
      Накопитель на жестком магнитном диске ( НЖМД – винчестер)...14
      Устройство чтения компакт-дисков (CD-ROM)……………………..16
      DVD…………………………………………………………………….17
3. Глава III: Другие устройства накопления и хранения информации……..21
    3.1.Магнитооптика………………………………………………………….21
    3.2.Стримеры………………………………………………………………..22
    3.3.Флэш-память…………………………………………………………….23
    3.4.Портативные USB-накопители………………………………………...24
3.5.USB Flash Drive………………………………………………………....25
3.6.Приводы и диски на 20 Гб……………………………………………...26
3.7.BenQ DW1620 Pro…………………………………………………….....26
3.8.ВЗУ для мобильных телефонов………………………………………...27
4. Глава IV: Новейшие запоминающие устройства…………………………..29
4.1.Голографические устройства…………………………………………...29
4.2.MODS-диски…………………………………………………………......30
Заключение……………………………………………………………………....32
Литература……………………………………………………………………….33 
 
 

Введение
    С давних времен люди пытались облегчить свой труд, создавая различные машины и механизмы, усиливающие физические возможности человека.
    Первый  персональный компьютер (ПК) в 1976г выпустила  фирма Apple; в СССР персональные компьютеры появились в 1985г. Различают два основных класса компьютеров: 1) цифровые компьютеры, обрабатывающие данные в виде числовых двоичных кодов; 2) аналоговые компьютеры, обрабатывающие непрерывно меняющиеся физические величины, которые являются аналогами вычисляемых величин.
    По  принципам устройства компьютер – модель человека, работающего с информацией.
    В 1945 г. Джон фон Нейман1 (1903-1957), американский ученый, выдвинул идею использования внешних запоминающих устройств2 для хранения программ и данных. Нейман разработал структурную принципиальную схему компьютера. Схеме Неймана соответствуют и все современные компьютеры.
    Внешняя память предназначена для долговременного хранения программ и данных. Устройства внешней памяти (накопители) являются энергонезависимыми, т.е выключение питания не приводит к потере данных. Они могут быть встроены в системный блок или выполнены в виде самостоятельных блоков, связанных с системным через его порты. Важной характеристикой внешней памяти служит ее объем. Объем внешней памяти можно увеличивать, добавляя новые накопители. Не менее важными характеристиками внешней памяти являются время доступа к информации и скорость обмена информацией. Эти параметры зависят от устройства считывания информации и организации типа доступа к ней.
    Актуальность данной темы исследования обоснована тем, что происходит эволюционный переход к информационному обществу, а также  некоторые ВЗУ являются недорогими часто применяемыми устройствами.
    Целью моего исследования является исследование видов внешних запоминающих устройств, возможность  увеличения объемов памяти и ее организация, скорости обмена информацией.
      Для достижения поставленной цели  необходимо решить ряд задач:
      рассказать о видах ВЗУ.
      разобрать в подробностях характеристики каждого ВЗУ.
      выявить лучшие и худшие качества каждого ВЗУ.
      исследовать основные способы организации  ВЗУ
    Объектом  исследования являются внешние запоминающие устройства.
    По  типу доступа к информации устройства внешней памяти делятся на два  класса:
      устройства прямого (произвольного) доступа
      устройства последовательного доступа.
 При  прямом (произвольном) доступе время  доступа к информации не зависит  от ее места расположения на  носителе. При последовательном  доступе время доступа зависит  от местоположения информации.
    Скорость  обмена информацией зависит от скорости ее считывания или записи на носитель, что определяется, в свою очередь, скоростью вращения или перемещения этого носителя в устройстве.
    Внешняя (долговременная) память - это место хранения данных, не используемых в данный момент в памяти компьютера.
    Устройства  внешней памяти - это, прежде всего, магнитные устройства для хранения информации.
    По  способу записи и чтения накопители делятся, в зависимости от вида носителя, на магнитные, оптические и магнитооптические.
    Раньше  в вычислительной технике к внешним устройствам (ВЗУ) относили устройства хранения дискретной информации, главным образом, на магнитных лентах, барабанах, дисках.
    Кто не знает, что такое магнитофон? На магнитофон мы можем записать речь, музыку, а затем прослушивать записи. Звук записывается на дорожках магнитной ленты с помощью магнитной головки. С помощью этого же устройства магнитная запись снова превращается в звук.
    Аналогично  действует устройство внешней памяти ЭВМ - накопитель на магнитной ленте (стример). На дорожки ленты записывается все тот же двоичный код: намагниченный участок – единица, не намагниченный - нуль. При чтении с ленты запись превращается в нули и единицы в битах внутренней памяти.
      Они служат для запоминания больших массивов информации - наборов данных, программ пользователей и операционных систем. В процессе работы вычислительной системы по мере необходимости производится оперативный обмен информационными массивами между ВЗУ и основной памятью.
    Положительным качеством ЗУ на магнитных лентах, дисках, барабанах по сравнению с оперативными ЗУ, например, на ферритовых сердечниках является их большая емкость при сравнительно низкой стоимости хранения единицы информации. Во многих ВЗУ имеется возможность быстрой смены носителей информации: катушек с магнитной лентой, пакетов магнитных дисков. Это позволяет, как бы беспредельно наращивать их емкость.
    Для того чтобы полностью оценить  новейшие разработки в области внешних  запоминающих устройств необходимо знать, с чего все начиналось, т. е. историю ВЗУ. 

                ГЛАВА I
    История
    ВЗУ относят к устройствам ввода-вывода (по отношению к процессору). ВЗУ со сменными носителями  информации могут использоваться для ввода информации в ЭВМ или для вывода результатов вычислений из ЭВМ так же, например, как перфоленточные и перфокарточные устройства ввода – вывода. Однако по сравнению   с   этими   устройствами ВЗУ считывают и записывают информацию с очень высокой скоростью, а также допускают многократную перезапись информации на одном и том же носителе. Указанные достоинства  ВЗУ обусловили их широкое применение   в   вычислительной   технике.   Особое   значение ВЗУ получили в ЭВМ третьего поколения.
    Машины  третьего поколения, в частности  все модели Единой системы ЭВМ  (ЕС ЭВМ), работают практически полностью  под управлением той  или  иной операционной системы. Они имеют развитое математическое обеспечение,   для   хранения  которого   требуются   сотни тысяч и миллионы запоминающих ячеек. Основная часть математического обеспечения хранится в ВЗУ. Поэтому в минимальный комплект каждой модели ЕС ЭВМ входят, как правило, запоминающие устройства на магнитных дисках и лентах.
    Разработка  автоматизированных систем (АСУ) предусматривает создание очень больших информационных массивов, банков данных, пакетов прикладных программ. Для их хранения лучше всего подходят ВЗУ. Более того, создание и эксплуатация АСУ на базе ЭВМ без использования ВЗУ не представляется возможным.
    Несмотря  на то, что ВЗУ применяют с начала развития вычислительной техники, в научно-технической литературе описаны они сравнительно мало.
    Я бы хотела в качестве исторической справки изложить основные принципы построения и функционирования ВЗУ первой ЕС ЭВМ, созданной совместными усилиями специалистами по вычислительной технике стран – членов СЭВ. Здесь приводятся основные технические характеристики ВЗУ на магнитных лентах, сменных и постоянных магнитных дисках и магнитных барабанах. Наибольшее внимание рассмотрению способов размещения информации (поскольку они унифицированы для типов носителей) и команд, с помощью которых процессор управляет операциями поиска, считывания и записи информации в ВЗУ.
    Описанию  отдельных устройств предшествует изложение принципов организации и функционирования системы обмена информацией и интерфейса ввода – вывода. Эти вопросы являются общими для внешних устройств всех типов и всех моделей ЕС ЭВМ.
    Введение  средств  расширения возможностей  интерфейса ввода – вывода требует использования дополнительных линий. Принято решение об использовании этой целью существовавших ранее резервных линий. Эти линии обеспечивают уплотнение информации в шинах, повторение канальных команд и селективный сброс, вводимый УВУ, без увеличения   числа   разъемов. Введение второго комплекта информационных шин требует использования двух дополнительных кабелей: информационного и маркерного.
    Перечисленные  возможности   усовершенствованного интерфейса   ввода – вывода  должны учитываться при новых разработках каналов и УВВ. Усовершенствованный интерфейс, сохраняя основные функциональные характеристики, параметры, схемы и конструкции электрических связей интерфейса ввода – вывода ЕС ЭВМ, обеспечивает совместимость ранее выпущенных УВВ3  с УВВ новых разработок ЕС ЭВМ и имеет средства для выполнения   дополнительных   функций,    расширяющих возможности каналов и устройств ввода – вывода. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    ГЛАВА II
    2.1. Накопители на магнитной ленте
    

    Рис.1
    Магнитные ленты (рис.1) хранят и используют намотанными на катушки. В ЕС ЭВМ унифицированы катушки двух видов:
      подающие
      принимающие.
    Ленты поставляются пользователям на подающих катушках и не требуют дополнительной перемотки при установке их в накопители. Лента на катушку наматывается рабочим слоем внутрь.
    Основные  размеры   одинаковы   как   для   подающих, так и для  принимающих катушек. Запись информации на магнитную ленту осуществляется по девяти дорожкам.
    В накопителях ЕС ЭВМ информация записывается с продольной плотностью 8 бит/мм, 32 бит/мм, или 63 бит/мм. На девяти дорожках параллельно записывается 8 информационных битов и 1 контрольный бит, которые составляют 1 байт. Для записи контрольного разряда отводится четвертая дорожка. Группа байтов, записываемая по одному КСК или по связанной цепочкой данных последовательности КСК, образует зону.
    При плотности записи 32 бит/мм в конце  зоны записываются две контрольные строки: строка циклического контроля (ЦКС) и строка продольного контроля (ПКС). ЦКС записывается на ленте за последним байтом данных с промежутком в 4 байта. Для формирования ПКС ведется подсчет единиц на каждой дорожке зоны.  Их общее число на любой дорожке должно быть четным. Это делается путем записи нуля или единицы    в    соответствующий разряд ПКС. Строка ПКС записывается после ЦКС с промежутком в 4 байта. При  плотности записи  8  и  63   бит/мм, размещение данных на ленте такое же, как и при плотности записи 32 бит/мм, но в конце зоны записывается только ПКС с промежутком в 4 байта от последнего байта данных. Строка  ПКС одновременно  является  признаком конца зоны. Начало зоны определяется по появлению первого байта данных.
    Для записи информации с плотностью 8 и 32 бит/ мм используется потенциальный метод без возвращения к нулю с модификацией по единице называемый методом «без возвращения к нулю» (БВН-1). В зарубежной литературе этот метод сокращенно называют также NRZ-1.
    При плотности 63 бит/мм  используется другой  метод записи - метод  фазовой   модуляции   или фазового кодирования  (ФК). В каждом такте записи изменяется полярность тока  в записывающей  головке  и, следовательно, изменяется магнитное состояние носителя. Полярность тока изменяется с отрицательной на положительную при записи нуля и с положительной на отрицательную при записи единицы. Происходит как бы изменение фазы тока записи. Логическая схема тракта записи анализирует значение следующей записываемой двоичной цифры: если должна   быть записана та же цифра, что и в предыдущем такте, то   ток в головке записи предварительно реверсируется. Метод ФК позволяет значительно повысить достоверность выделения сигналов при считывании информации в условиях наложения соседних магнитных отпечатков на носителе. Объясняется это тем, что при изменении частоты в широких пределах фазе искажения   сигналов остаются малыми, что позволь проще идентифицировать считываемые сигналы и поэтому реализовать более высокую плотность записи 63 бит/мм.  При использовании метода фазового кодирования строка ЦКС не записывается.
2.2. Накопители прямого доступа
    К ЗУ прямого доступа в номенклатуре технических средств ЕС ЭВМ относятся  устройства хранения информации на магнитных дисках и барабанах. Основная особенность их заключается в том, что время поиска любой записи мало зависит от ее местоположения на носителе. Каждая физическая запись на носителе имеет адрес, по которому обеспечивается непосредственный доступ к ней минуя остальные записи.
    Это свойство ЗУ прямого доступа отличает их от ЗУ на магнитной ленте и от всех других типов устройств ввода - вывода ЕС ЭВМ.
    Во  всех накопителях прямого доступа, как и в накопителях на магнитной ленте, используется принцип электромагнитной записи информации на движущийся носитель. Носителями информации в накопителях прямого доступа служат магнитные диски или барабаны, которые в рабочем состоянии постоянно вращаются с большой скоростью. Магнитные диски собираются зачастую в виде пакета из нескольких дисков. Накопители на магнитных дисках подразделяются на две группы: накопители на сменных магнитных дисках, на которых можно осуществлять быструю смену пакетов магнитных дисков и Накопители на постоянных магнитных дисках, в которых пакет магнитных дисков или один диск стационарно устанавливается в заводских условиях и не может быть оперативно заменен.
    ЗУ  с накопителями на постоянных магнитных  дисках и на магнитных барабанах используются в машине как устройства внешней памяти большой емкости. ЗУ на сменных магнитных дисках по системотехническим возможностям подобны ЗУ на магнитной ленте. Они служат только внешней памятью, но и устройствами ввода вывода информации. Пакеты сменных магнитных дисков удобны в хранении. Из них на вычислительных центрах создаются библиотеки, что позволяет как бы неограниченно наращивать емкость внешней памяти вычислительных систем.
    Сравнительный анализ основных технических и функциональных параметров ЗУ на магнитной ленте и ЗУ прямого доступа показывает, что они имеют примерно одинаковую емкость и скорость обмена информацией при записи и считывании. Несомненным преимуществом ЗУ прямого  
доступа является малое время поиска информации на носителе. Однако стоимость хранения единицы информации на магнитных дисках и барабанах примерно на порядок больше, чем на магнитных лентах.

2.3. Накопитель на гибких магнитных дисках (НГМД - дисковод)


Рис. 2
    НГМД (рис.2) - это устройство использует в качестве носителя информации гибкие магнитные диски - дискеты, которые могут быть 5-ти или 3-х дюймовыми. [Дискета - это магнитный диск вроде пластинки, помещенный в картонный конверт. В зависимости от размера дискеты изменяется ее емкость в байтах. Если на стандартную дискету размером 5’25 дюйма помещается до 720 Кбайт информации, то на дискету 3’5 дюйма уже 1,44 Мбайта.]4 Дискеты универсальны, подходят на любой компьютер того же класса оснащенный дисководом, могут служить для хранения, накопления, распространения и обработки информации. Дисковод - устройство параллельного доступа, поэтому все файлы одинаково легкодоступны. Сейчас дискеты применяются в основном для резервирования небольших объемов данных и для распространения информации. Дискеты размером 5’25 дюйма морально устарели и используются редко. Наибольшим  распространением из накопителей на гибких магнитных дисках пользуется дискета 3’5 дюйма или флоппи-диски (floppy disk).
    Диск  покрывается сверху специальным  магнитным слоем, который обеспечивает хранение данных. Информация записывается с двух сторон диска по дорожкам, которые представляют собой концентрические  окружности. Каждая дорожка разделяется на секторы. Плотность записи данных зависит от плотности нанесения дорожек на поверхность, т. е. числа дорожек на поверхности диска, а также от плотности записи информации вдоль дорожки.
    Если  при покупке на поверхность диска не нанесены дорожки и секторы, то его нужно подготовить для записи данных, отформатировать. Для этого в состав системного программного обеспечения включена специальная программа, которая производит форматирование диска.
    К недостаткам относятся маленькая емкость, что делает практически невозможным долгосрочное хранение больших объемов информации, и не очень высокая надежность самих дискет.  
 

2.4. Накопитель на жестком магнитном диске (НЖМД - винчестер)

Рис. 3
    Накопители  на жёстком диске (рис.3) (винчестеры5) предназначены для постоянного хранения информации, используемой при работе с компьютером: программ операционной системы, часто используемых пакетов программ, редакторов документов, трансляторов с языков программирования и т.д. Является логическим продолжением развития технологии магнитного хранения информации. Появились несколько лет назад и уже завоевали огромную популярность благодаря своим многочисленным достоинствам:
    чрезвычайно большая емкость;
    простота и надежность использования;
    возможность обращаться к тысячам файлам одновременно;
    высокая скорость доступа к данным.
      Из недостатков можно выделить  лишь отсутствие съемных носителей  информации, все данные записаны  внутри винчестера на жестких  магнитных дисках. (В настоящее  время используются внешние винчестеры и системы резервного копирования с дисками по типу дискет).
    Наличие жёсткого диска значительно повышает удобство работы с компьютером.
    С точки зрения операционной системы  элементарной единицей размещения данных на диске является кластер. Он представляет собой группу секторов, с точностью до которой происходит размещение файлов на диске. Сектор представляет собой зону дорожки, в которой собственно и хранятся разряды данных. Количество секторов на дорожке зависит от многих переменных, но в основном определяются суммарной длиной поля данных и служебного поля, образующих сектор (горизонтальная плотность), размер сектора.
      Емкость винчестера6 – его основная характеристика. Сегодня объем данных, которые можно записать должен быть не менее 10-15 Гб, но требования программного обеспечения постоянно растут, поэтому жесткий диск придется менять раз в 1-2 года в зависимости от то того насколько интенсивно и с какими целями используется компьютер.
    Еще одой характеристикой является время доступа необходимое HDD для поиска любой информации на диске. Среднее время доступа, на сегодняшний день, для лучших IDE и SCSI дисков  - это значение меньше 2 мс.  Среднее время поиска – время, в течение которого магнитные головки перемещаются от одного цилиндра к другому главным образом зависит от механизма привода  головок, а не от интерфейса. Скорость передачи данных, зависит от количества байт в секторе,  количестве секторов на дорожке и от скорости вращения дисков (3000-3600 об./мин. Самые современные HDD – 7200 об./мин.). Производители дают гарантию надежности устройства, которая обычно составляет 20000-500000 часов. Наработка винчестера за год составит 8760 часов, что делает этот параметр не важным, так как винчестер морально устареет раньше, чем физически.
2.5. Устройство чтения компакт-дисков (CD-ROM)

Рис. 4
CD-ROM7 (рис.4) является представителем оптической технологии. Его характеризуют следующие показатели:
      По сравнению с винчестером он надежнее в транспортировке
      CD-ROM имеет большую емкость, порядка 700Мб
      CD-ROM практически не изнашивается
    Минимальная скорость передачи данных у CD-ROM составляет 150Кбайт/с и возрастает в зависимости от модели привода, т.е. 52-х скоростной CD-ROM ,будет иметь 52*150 = 7,8Мб/с.
    CD-ROM являются, в основном, адаптацией компакт-дисков цифровых аудиозаписывающих систем. Цифровые данные записываются на диск, используя специальное записывающее устройство, которое наносит микроскопические ямки на поверхности диска. Информация, закодированная с помощью этих ямок, может быть прочитана просто путем регистрации изменения отраженности (ямки будут темнее, чем фон блестящего серебристого диска). Как только CD-ROM будет отштампован с помощью прессов, данные уже не могут быть изменены, углубления будут вечны.
    В противоположность неизменяемым дискам(CD-R), перезаписываемые оптические устройства(CD-RW) выполняют именно то, что следует из их названия. Данные могут быть записаны на такие диски в форме, которая позволяет их оптическое считывание. Идея оптических перезаписываемых носителей заставила различных производителей начать развитие, по крайней мере, трех технологий - красящих полимеров, фазовых изменений и магнитооптики, две из которых позволили обеспечить высокую плотность хранения, возможную только на оптических носителях, а третья дала потенциальную возможность развивать эти носители в направлении обеспечения перезаписи хранимых данных. В системах с красящим полимером подкрашенный внутренний слой обесцвечивается от нагрева лазером. В системах с изменением фазы, материал, используемый для записи, может быть в виде правильной кристаллической решетки или в виде хаотично расположенных молекул, при этом его отражательная система изменяется. Недостаток перезаписываемых дисков, основанных на первых двух принципах - старение рабочего материала, третьего - невысокая скорость записи.
2.6. DVD

Рис. 5
Отличия DVD от обычных CD-ROM
    Самое основное отличие - это, естественно, объем  записываемой информации. Если на обычный CD-диск можно записать 640 Мб (хотя в  последнее время встречаются  болванки и на 800 Мб, но далеко не все  приводы смогут прочитать то, что  записано на таком носителе), то на один DVD-диск влезет от 4,7 до 17 Гб.
    [В DVD (рис.5) используется лазер с меньшей длиной волны, что позволило существенно увеличить плотность записи, а кроме того, DVD подразумевает возможность двухслойной записи информации, то есть на поверхности компакта находится один слой, поверх которого наносится еще один, полупрозрачный, и первый считывается сквозь второй параллельно. 
В самих носителях тоже отличий больше, чем кажется на первый взгляд.
]8
    Из-за того, что плотность записи существенно  возросла, а длина волны стала меньше, изменились и требования к защитному слою - для DVD он составляет 0,6 мм против 1,2 мм у обычных CD. Естественно, что диск такой толщины будет значительно более хрупким, по сравнению с классической болванкой.
    Поэтому еще 0,6 мм обычно заливаются пластиком с двух сторон, чтобы получились те же 1,2 мм. Но самый главный бонус такого защитного слоя в том, что благодаря его малому размеру на одном компакте стало возможным записывать информацию с двух сторон, то есть удваивать его емкость, при этом оставляя размеры практически прежними.
Емкость DVD
    Существует  пять разновидностей DVD-дисков.
    Таблица 1
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.