На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


курсовая работа Будущее нанотехнологий: проблемы и перспективы

Информация:

Тип работы: курсовая работа. Добавлен: 12.09.2012. Сдан: 2012. Страниц: 13. Уникальность по antiplagiat.ru: < 30%

Описание (план):


Содержание

 
Введение…………………………………………………………………………...2
    История развития нанотехнологий…………………………………………..2
    Свойства наностуктур………………………………………………………...5
2.1 Значение применения нанотехнологий для машиностроения……………..7
2.2 Технологические особенности применения нанотехнологий в машиностроении (на примере автомобильной промышленности)……………………10
2.3 Проблемы и перспективы развития нанотехнологий в машиностроении.15
    Нанотехнологии в автомобилестроении…………………………………...18
3.1 Применение нанотехнологий в автомобильной промышленности………18
3.2 Перспективы нанотехнологии в автомобильной промышленности……..20
3.3 Нанотехнологии в техническом обслуживании…………………………...21
3.4 Автомобили будущего………………………………………………………26
    Автомобилестроение и нанокомпозиты……………………………………33
    Будущее нанотехнологий: проблемы и перспективы……………………..39
5.1. Нано на стыке наук………………………………………………………….43
Заключение……………………………………………………………………….46
Список использованной литературы…………………………………………...48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Введение
 
Нанотехнология - высокотехнологичная отрасль, направленная на изучение и работу с атомами и молекулами. Разработки в этой области ведут к революционным успехам в медицине, электронике, машиностроении и создании искусственного интеллекта. Если 10 лет назад единицы людей представляли себе, что такое нанотехнологии, то, через 5 лет, по оценкам экспертов, вся промышленность будет развиваться, используя технологии работы с атомами и молекулами. С помощью нанотехнологий можно очищать нефть и победить многие вирусные заболевания, можно создать микроскопических роботов и продлить человеческую жизнь, можно победить СПИД и контролировать экологическую обстановку на планете, можно построить в миллион раз более быстрые компьютеры и освоить Солнечную систему.
Целью данной работы является изучение нанотехнологий в автомобилестроении. Задачами дипломной работы являются: 1) изучить историю и свойства нанотехнологий и наноструктур; 2) рассказать о применении нанотехнологий в автомобилестроении; 3) исследовать проблемы и перспективы нанотехнологий.
Нанотехнологии качественно отличаются от традиционных дисциплин, поскольку на таких масштабах привычные, макроскопические, технологии обращения с материей часто неприменимы, а микроскопические явления, пренебрежительно слабые на привычных масштабах, становятся намного значительнее: свойства и взаимодействия отдельных атомов и молекул, квантовые эффекты.
Теоретик  Э. Дрекслер предложил слово "нанотехнология" в 1980 году, описывая им теоретический (в то время) молекулярный производственный процесс с использованием компонентов и устройств размерами от 1 до 100 нм (этот диапазон получил название наномасштаб - nanoscale).
В некоторых  книгах можно встретить следующее  определение: нанотехнология - это совокупность методов производства продуктов с заданной атомарной структурой путем манипулирования атомами и молекулами.
 
1. История развития нанотехнологий
 
Нанонаука основана на изучении объектов, которые включают компоненты размерами менее 100 нм хотя бы в одном измерении и в результате получают принципиально новые качества. Эта отрасль знаний относительно молода и насчитывает не более столетия.
Дедушкой  нанотехнологий можно считать греческого философа Демокрита. 2400 лет назад он впервые использовал слово “атом” для описания самой малой частицы вещества. 1905 Швейцарский физик Альберт Эйнштейн опубликовал работу, в которой доказал, что размер молекулы сахара составляет примерно 1 нанометр.
1931 Немецкие  физики Макс Кнолл и Эрнст Руска создали электронный микроскоп, который впервые позволил исследовать нанообъекты.
1959 Американский  физик Ричард Фейнман впервые  опубликовал работу, где оценивались перспективы миниатюризации. Основные положения нанотехнологий были намечены в его легендарной лекции “Там внизу – много места” (“There’s Plenty of Room at the Bottom”), произнесенной им в Калифорнийском Технологическом Институте. Фейнман научно доказал, что с точки зрения фундаментальных законов физики нет никаких препятствий к тому, чтобы создавать вещи прямо из атомов. Тогда его слова казались фантастикой только лишь по одной причине: еще не существовало технологии, позволяющей оперировать отдельными атомами (то есть опознать атом, взять его и поставить на другое место).Чтобы стимулировать интерес к этой области, Фейнман назначил приз в $1000, тому, кто впервые запишет страницу из книги на булавочной головке, что, кстати, осуществилось уже в 1964 году.
1968 Альфред  Чо и Джон Артур, сотрудники научного подразделения американской компании Bell, разработали теоретические основы нанообработки поверхностей.
1974 Японский  физик Норио Танигучи ввел в научный оборот слово “нанотехника”, предложив называть так механизмы размером менее 1 микрона.
1981 Германские  физики Герд Бинниг и Генрих Рорер создали сканирующий туннельный микроскоп _ прибор, позволяющий осуществлять воздействие на вещество на атомарном уровне. Через четыре года они получили Нобелевскую премию.
1985 Американский  физики Роберт Керл, Хэрольд Крото и Ричард Смолли создали технологию, позволяющую точно измерять предметы диаметром в один нанометр.
1986 Создан  атомно_силовой микроскоп, позволяющий, в отличие от туннельного микроскопа, осуществлять взаимодействие с любыми материалами, а не только с проводящими.
1986 Нанотехнология стала известна широкой публике. Американский футуролог Эрик Дрекслер опубликовал книгу, в которой предсказал, что нанотехнология в скором времени начнет активно развиваться.
Введение  в нанотехнологии
1989 Дональд  Эйглер, сотрудник компании IBM, выложил название своей фирмы атомами ксенона.
1998 Голландский  физик Сеез Деккер создал нанотранзистор.
2000 Администрация  США объявила “Национальную
нанотехнологическую инициативу” (National Nanotechnology Initiative). Тогда из федерального бюджета США было выделено $500 млн. В 2002 сумма ассигнований была увеличена до $604 млн. На 2003 год “Инициатива” запросила $710 млн., а в 2004 году правительство США приняло решение увеличить финансирование научных исследований в этой области до $3,7 млрд. в течение четырех лет. В целом, мировые инвестиции в нано в 2004 году составили около $12 млрд.
2004 Администрация  США поддержала “Национальную  наномедицинскую инициативу” как часть National Nanotechnology Initiative Стремительное развитие нанотехнологий вызвано еще и потребностями общества в быстрой переработке огромных массивов информации. Современные кремниевые чипы могут при всевозможных технических ухищрениях уменьшаться ещё примерно до 2012 года. Но при ширине дорожки в 40-50 нанометров возрастут квантовомеханические помехи: электроны начнут пробивать переходы в транзисторах за счет туннельного эффекта (о нем речь пойдет ниже), что равнозначно короткому замыканию. Выходом могли бы послужить наночипы, в которых вместо кремния используются различные углеродные соединения размером в несколько нанометров. В настоящее время ведутся самые интенсивные разработки в этом направлении.
Нанотехнологии - ключевое понятие начала XXI века, символ новой, третьей, научно-технической революции. Это "самые высокие" технологии, на развитие которых ведущие экономические державы тратят сегодня миллиарды долларов. По прогнозам ученых нанотехнологии в XXI веке произведут такую же революцию в манипулировании материей, какую в ХХ веке произвели компьютеры в манипулировании информацией. Их развитие открывает большие перспективы при разработке новых материалов, совершенствовании связи, развитии биотехнологии, микроэлектроники, энергетики, здравоохранения и вооружения. Среди наиболее вероятных научных прорывов эксперты называют значительное увеличение производительности компьютеров, восстановление человеческих органов с использованием вновь воссозданной ткани, получение новых материалов, созданных напрямую из заданных атомов и молекул, а также новые открытия в химии и физике.
Нанотехнологии уже так или иначе затрагивают нашу жизнь. Нанопродукты можно обнаружить в автомобилях и в краске на стенах домов. По прогнозам отраслевой ассоциации NanoBusiness Alliance, к 2010 году мировой рынок нанопродуктов и услуг вырастет до 1 трлн. долларов.
Одна  из причин трудного "характера" нанотехнологии заключается в том, что ее сфера - непостижимо малые по своим масштабам элементы. Нанометр - единица измерения, которая дала название нанотехнологии, - составляет одну миллиардную часть метра. Атом водорода, наименьший из существующих в природе, имеет диаметр около 1/10 нм; диаметр человеческого волоса - около 75 тыс. нм.
Нанотехнологии качественно отличаются от традиционных дисциплин, поскольку на таких масштабах привычные, макроскопические, технологии обращения с материей часто неприменимы, а микроскопические явления, пренебрежительно слабые на привычных масштабах, становятся намного значительнее: свойства и взаимодействия отдельных атомов и молекул, квантовые эффекты.
В немалой  степени определение нанотехнологии зависит от специалиста, которому задан вопрос.
Теоретик  Э. Дрекслер предложил слово "нанотехнология" в 1980 году, описывая им теоретический (в то время) молекулярный производственный процесс с использованием компонентов и устройств размерами от 1 до 100 нм (этот диапазон получил название наномасштаб - nanoscale). Дрекслер выдвинул концепцию универсальных молекулярных роботов, работающих по заданной программе и собирающих любые объекты (в том числе и себе подобные) из подручных молекул. Все это также сначала воспринималось как научная фантастика. Ученый уже тогда довольно точно предсказал немало грядущих достижений нанотехнологии, которые с 1989 года сбываются, причем часто со значительным опережением даже его прогнозов.
Однако, как часто бывает, задолго до работ  Дрекслера идею о возможности существования искусственных автоматов-самосборщиков выдвинул математик Джон фон Нейман ( John Von Neumann) — ученый, разработавший теоретическую модель устройства компьютера (компьютер фон Неймана) — первое устройство с клавишным вводом данных.
 
2. Свойства наноструктур
 
Первым  и самым главным признаком  наночастиц является их геометрический размер - протяженность не более 100 нм хотя бы в одном измерении. Именно с таких размеров может наблюдаться качественное изменение свойств частиц по сравнению с макрочастицами того же самого вещества. Например, нанонить паутины способна надежно удерживать огромных по сравнению с ее толщиной насекомых.
Именно  размерными эффектами определяются многие уникальные свойства наноматериалов. Для различных характеристик (механических, электрических и др.) критический размер может быть различным, как и характер изменений (равномерный или неравномерный). Например, электропроводность начинает зависеть от размера частицы при уменьшении кристалла вещества до размеров 10-20 нм и менее.
Доля  атомов, находящихся в поверхностном  слое (толщиной около 1 нм), естественно, растет с уменьшением размера  частиц вещества. Поверхностные атомы обладают свойствами, отличающимися от "внутренних" атомов, поскольку они связаны с соседями иначе, чем внутри вещества. В результате на поверхности велика вероятность протекания процессов изменения структурного расположения атомов и их свойств. В результате поверхность (или межфазная граница) рассматривается как некое новое состояние вещества.
Учитывая  абсолютные размеры наночастиц, с определенными допущениями можно считать, что наночастица представляет собой вещество, близкое по свойствам к межфазной границе. Например, нанотрубки имеют высокую удельную плотность поверхности, поскольку вся масса сосредоточена в поверхностном слое.
Важнейшими  свойствами наноструктур, отличающими их от обычных материалов, являются повышенная диффузионная и миграционная способность атомов, молекул веществ и электронов по поверхности твердых наноструктур, а для жидких наноструктур - ускоренная диффузия внутри них, повышенная прочность изолированных твердых наноструктур и способность твердых наноструктур к самоорганизации и самосборке.
1) Повышенная  диффузионная и миграционная  способность атомов и молекул  веществ по поверхности и внутри  наноструктур:
Жидкости  внутри микротрещин и микропор нанометровой ширины являются жидкими наноструктурами, обладающими своеобразными особенностями, из которых важнейшей является ускоренная диффузия растворенных в них веществ под действием осмотической составляющей СРПС.
2) Повышенная  миграционная способность атомов  по поверхности твердых наноструктур:
Как известно, диффузия по поверхности твердых  веществ осуществляется на несколько порядков быстрее, чем в их объеме.
3) Ускоренное  движение электронов по поверхности  твердых наноструктур - сверхпроводимость электрического тока:
Здесь, как  и в предыдущем случае, можно выделить два уровня ускоренного движения частиц, в данном случае электронов, по поверхности веществ. Первый уровень - движение электронов вдоль поверхности обычного проводника при обычных температурах. Ускоренное движение электронов в этом случае хорошо известно и практически используется в ускорителях заряженных частиц Ван-дер-Граафа (Гершензон и др., 1980).
4) Ускоренное  движение электронов по поверхности  твердых наноструктур:
На поверхности  обычных проводников Т-СРПС, создавая разуплотненный поверхностный слой, способствует образованию слоя с более редким расположением атомов в нем. Поэтому в нем электрический ток протекает с меньшим сопротивлением, а значит, и с большей скоростью, чем в глубине проводника, создавая первый уровень ускоренного движения электронов.
5) Ускоренное  движение электронов по поверхности  твердых наноструктур:
В научной  литературе проводят аналогию между  сверхпроводимостью тока и сверхтекучестью  жидкого гелия, объясняя, что жидкий гелий также образует единую когерентную  сверхтекучую систему - конденсат, который  тоже течет через щели без какого-либо сопротивления.
6) Повышенная  прочность на разрыв изолированных  твердых наноструктур.:Известно, что прочность на разрыв, например углеродных нанотрубок, в несколько десятков раз больше самой прочной стали при плотности в 6 раз меньшей (Головин, 2007). Удовлетворительного объяснения этому в научных работах пока не дано.
7) Способность  твердых наноструктур к самоорганизации и самосборке:
Наноструктуры, находящиеся в жидкой, газовой среде и в вакууме, обладают максимальными возможностями к самоорганизации и самосборке, так как эти среды не мешают им в полной мере проявить эти свои свойства.
 
2.1. Значение применения нанотехнологий для машиностроения
 
Проблему  катастроф различных физических объектов и на земле, и в воде, и в воздухе, и в космосе, в  основном, связанных с качеством  и надежностью машин, нельзя решить без учета эволюционного развития структуры материала на всех этапах его жизненного цикла. Понимание термина «технологический мониторинг» в контексте новой метрологии объемного наноструктурирования позволит решать задачи по обеспечению качества и повышенного ресурса оборудования, устранить необходимость завышенного коэффициента запаса прочности, что повышает конкурентоспособность.
 Объемное  наноструктурирование имеет решающее значение при разработке отличающихся малым весом летательных аппаратов из термически устойчивых материалов с высокой удельной прочностью.
Например:
Реализация  нанотехнологий в авиакосмической отрасли позволит:
    Повысить прочность летательных аппаратов. Сейчас ставится задача довести возможность их совершать до 70-90 тысяч полетов, что требует повышения прочностных характеристик, которые обеспечивают новые наноматериалы.
    Добиться «живучести» и снижения веса (которое обеспечивают в настоящее время композиты). К ним должны присоединиться наноматериалы.
    Переходя на нанотехнологии, можно достигнуть снижения трения.
    Решить задачи борьбы с обледенением и прилипанием к внешней стороне конструкции летательных аппаратов различной «биологической живности» с помощью отслаивающихся чешуек.
    Снизить заметность летательных аппаратов.
Космические аппараты будущего будут уже не просто машинами для перевозки живых  существ, но живыми организмами. Они  смогут обучаться, диагностировать  и ремонтировать себя. Применение нанотехнологии в аэрокосмической технике способно также обеспечить: снижение энергопотребления в 104 раз, снижение вибрации и шума - в 102, повышение быстродействия - в 106, повышение КПД солнечных батарей - в 101, повышение чувствительности датчиков - в 106, повышение времени автономной работы - в 104 раз, повышение надежности - в 102, повышение стойкости к радиации - в 101, повышение стойкости к перегрузкам - в 102 раз.
Внедрение нанотехнологий в автомобильную промышленность позволит сделать автомобили:
    Доступными (нанотехнологические методы производства позволяют создавать товары и услуги с низкой себестоимостью; в автомобилях будущего основной составляющей цены будет являться «брэнд»);
    комфортными (более совершенная работа механических частей, улучшенная шумо- и вибро- изоляция на основе наноструктурированных материалов, эргономичный салон);
    эффективными (повышения средней скорости движения автомобилей, повышение КПД использования энергии, необходимой для перевозки людей и грузов);
    интеллектуальными (широкое внедрение информационных систем во все узлы и компоненты автомобилей, принятие автомобилем все больших функций водителя на себя); 
    безопасными для человека и окружающей среды (новые, экологически чистые силовые установки, в том числе на топливных элементах, качественно новый уровень пассивной и активной безопасности для обитателей салона и пешеходов, широкое использование в конструкции авто биодеградируемых материалов, а с созданием дисассемблеров - возможность 100% утилизации устаревших автомобилей).
Кроме того, запатентованы новые  способы и ресурсосберегающие нанотехнологии, в том числе повышения долговечности на этапе эксплуатации, упрочнения твердых сплавов, нержавеющих, конструкционных и инструментальных марок стали, кузнечной сварки многослойных композиций и производства цельнокованого нержавеющего дамаска, квазиаморфного модифицирования карбидами и оксидами кремния. При этом ресурс изделий различного назначения, изготовленных по новой методологии для отраслей машиностроения повышается от 200 до 500%.
В целом  же, разработка и применение нанотехнологий в области машиностроения позволят достичь следующих основных целей:
    Изменение структуры валового внутреннего продукта в сторону увеличения доли наукоемкой продукции.
    Повышение эффективности производства.
    Переориентация российского экспорта с, в основном, сырьевых ресурсов на конечную высокотехнологичную продукцию и услуги путем внедрения наноматериалов и нанотехнологий в технологические процессы российских предприятий.
    Создание новых рабочих мест для высококвалифицированного персонала инновационных предприятии, создающих продукцию с использованием нанотехнологий.
    Развитие фундаментальных представлений о новых явлениях, структуре и свойствах наноматериалов.
    Формирование научного сообщества, подготовка и переподготовка кадров, нацеленных на решение научных, технологических и производственных проблем нанотехнологий, создание наноматериалов и наносистемной техники, с достижением на этой основе мирового уровня в фундаментальной и прикладной науках.
Эффективное достижение намеченных целей потребует  системного подхода к решению  целого ряда взаимоувязанных задач, основными из которых являются:
    Координация работ в области создания и применения нанотехнологий, наноматериалов и наносистемной техники;
    Создание научно-технической и организационно-финансовой базы, позволяющей сохранить и развивать имеющийся в России приоритетный задел в исследованиях и применении нанотехнологий; развитие бюджетных и внебюджетных фондов, поощряющих и развивающих исследования в области наноматериалов и нанотехнологий и стимулирующих вклады инвесторов;
    Формирование инфраструктуры для организации эффективных фундаментальных исследований, поиска возможных применений их результатов, развития новых нанотехнологий и их быстрой коммерциализации;
    Поддержка межотраслевого сотрудничества в области создания наноматериалов и развития нанотехнологий;
    Обеспечение заинтересованности в решении научных, технологических и производственных проблем развития нанотехнологий и наноматериалов путем либерализации налоговой политики, оптимизации финансовой политики; создание системы защиты интеллектуальной собственности;
    Разработка и внедрение новых подходов к обучению специалистов в области нанотехнологий.
 
2.2. Технологические особенности  применения нанотехнологий в машиностроении (на примере автомобильной промышленности)
 
Нанотехнологии обещают целый ряд выгод от широкомасштабного внедрения в массовое производство автомобилей. Так буквально каждый узел или компонент в конструкции автомобиля может быть в значительной степени усовершенствован при помощи нанотехнологий. 
Одним из наиболее перспективных и  многообещающих направлений применения (в том числе коммерческого) достижений современной нанотехнологии является область наноматериалов и электронных устройств.
Уже существуют легко очищающиеся  и водоотталкивающие покрытия для  материалов, основанные на использовании  диоксида кремния. 
В форме наночастиц это вещество приобретает новые свойства, в частности, высокую поверхностную энергию, что и позволяет частицам SiO2 при высыхании коллоидного раствора прочно присоединяться к различным поверхностям, в первую очередь к родственному им по составу стеклу, образуя, тем самым, сплошной слой наноразмерных выступов. 
Покрытие из наночастиц кремнезема делает обработанную поверхность гидрофобный - на поверхности с плёнкой из SiO2 капля воды касается субстрата лишь немногими точками, что во много раз уменьшает Ван-дер-ваальсовые силы и позволяет силам поверхностного натяжения жидкости сжать каплю в шарик, который легко скатывается по наклоненному стеклу, унося с собой накопившуюся грязь.
В силу наноразмерной толщины, такие покрытия совершенно невидимы, а благодаря биоинертности кремнезема - безвредны для человека и окружающей среды. Они устойчивы к ультрафиолету и выдерживают температуры до 400 °C, а действие водоотталкивающего эффекта длится в течение 4 месяцев.
Несколько зарубежных фирм уже выпускают  подобные покрытия в промышленных масштабах. На российском рынке их продукцию  представляет эксклюзивный дистрибутор - компания Nanotechnology News Network. 
Что касается в прямом понимании  самоочищающихся поверхностей, то такая  технология основана на использовании  диоксида титана. Принцип действия материала с таким покрытием заключается в следующем.
При попадании ультрафиолетового  излучения на нанопокрытие из TiO2 происходит фотокаталитическая реакция. В ходе этой реакции испускаются отрицательно заряженные частицы - электроны, а на их месте остаются положительно заряженные дырки. Благодаря появлению комбинации плюсов и минусов на поверхности, покрытой катализатором, содержащиеся в воздухе молекулы воды превращаются в сильные окислители - радикалы гидроокиси (HO), которые в свою очередь окисляют и расщепляют грязь, а также нейтрализуют различные запахи и убивают микроорганизмы.
Кроме покрытий для стекол также  разработаны и выпускаются составы  с аналогичным действием для  тканей, металла, пластика, керамики - и  все они имеют потенциал для  применения в автомобильной промышленности. 
Из серийных моделей автомобилей  гидрофобное покрытие наносится  на боковые стекла Nissan Terrano II. Оно не создает полноценный водоотталкивающий эффект, но уменьшает пятно контакта поверхности с каплями воды, благодаря чему во время дождя стекло остается вполне прозрачным (см. рис. 1).


 
 
 
 
 
 
 
 
 
Рисунок 1. Водоотталкивающий эффект гидрофобного покрытия
По некоторым сообщениям, концерн BMW работает над созданием самоочищающихся покрытий на основе нанопорошков. 
Компания Mercedes-Benz с конца 2003 года выпускает модели А, С, E, S, CL, SL, SLK покрытых новым поколением прозрачных лаков, изготовленных с использованием нанотехнологии. В состав верхнего слоя такого лакокрасочного покрытия вводят наноскопические керамические частицы. По утверждению создателей, новое лакокрасочное покрытие защищает кузов от царапин в три раза эффективнее, чем обычный лак.
По результатам испытаний оказалось, что покрытые лаком нового типа машины сохраняют блеск на 40% сильнее, чем  покрашенные обычной краской. 
Новое лаковое покрытие не только защищает кузов от механических повреждений, но еще и полностью отвечает требованиям  Mercedes относительно устойчивости к воздействию химических элементов, находящихся в воздухе.
В настоящее время с использованием нанотехнологических подходов уже производятся высокоэффективные антифрикционные и противоизносные покрытия для автотранспорта. Так российский концерн «Наноиндустрия» наладил серийное производство ремонтно-восстановительного состава «Нанотехнология». Состав предназначен для обработки механических деталей, испытывающих трение - двигали, трансмиссия. 
При применении состав позволяет создавать  модифицированный высокоуглеродистый железосиликатный защитный слой (МВЗС) толщиной 0,1-1,5 мм в областях интенсивного трения металлических поверхностей, что дает возможность избирательной компенсации износа мест трения и контакта деталей за счет образования в этих местах нового модифицированного поверхностного слоя. Использование РВС позволяет увеличивать ресурс работы узлов и деталей в 2-3 раза за счет замены плановых ремонтов предупредительной обработкой, снижает вибрации и шум, на 70-80% снижает токсичность выхлопа автомобиля без применения каких-либо других мер.
В аэрокосмической промышленности уже широко применяется семейство наноструктурированных аэрогелей. Так кремниевый аэрогель - лучший в мире твердый теплоизолятор, когда-либо обнаруженный или полученный. Для промышленности он представляет интерес, так как обладает высокой термической изоляцией - до 800° С (2,5-сантиметровый лист из силиконового аэрогеля надежно защищает руку человека от огня паяльной лампы) и акустической изоляцией - скорость звука при прохождении через аэрогель составляет лишь 100 м/сек. Развитие нанотехнологии позволит снизить себестоимость производства аэрогелей и сделает этот вид материалов доступным для применения в различных отраслях промышленности, в том числе автомобильной. 
Большие перспективы имеются в  улучшении электронных компонентов автомобиля с помощью нанотехнологий. Так МикроЭлектроМеханические системы (MEMS) уже расширяют стандартную технологию микроэлектроники, позволяет объединять в одной микросхеме элементы, обеспечивающие как механическое перемещение физических частей, так и электронов в электрической схеме. 
Это позволяет вместо раздельного  производства микроактуаторов и сенсоров, делать их в виде интегрированного в микросхему единого изделия. При этом для их производства используется уже апробированная традиционная технология производства интегральных микросхем и полупроводников.
Идею подвижного кремния (еще так  называют MEMS) прекрасно иллюстрируют MEMS-акселерометры, которые уже широко используются в качестве сенсоров автомобильных подушек безопасности. 
Вращающиеся акселерометры также  используются для расширения возможностей антиблокировочных систем автомобиля (ABS). Кроме того, в автомобилях MEMS находят применение в датчиках продольных и поперечных ускорений, датчиках крена и т.д. Определяя положение кузова, они служат источником информации для работы различных электронных систем стабилизации и контроля курсовой устойчивости. Также MEMS представляют интерес для создания датчиков давления, температуры. В дорогих автомобилях количество датчиков и сенсоров на основе MEMS-технологии может составлять до нескольких десятков штук. Кроме измерения ускорений и детектирования перемещений, MEMS используется в системах GPS-навигации. 
История развития MEMS насчитывает более  сорока лет, но широкое практическое распространение эти системы  получили только с середины 90-ых годов  прошлого века. В настоящее время  уже идет речь о развитии NEMS - NanoElectroMechanical Systems. В результате эволюции MEMS происходит уменьшение до нано размеров механических компонентов систем, снижается их масса, при этом увеличивается их резонансная частота и уменьшается константы взаимодействия, что сказывается на значительном повышении функциональности данного рода устройств. Точность измерения перемещения у лучших образцов таких устройств составляет 10 нанометров.
Развитие нанотехнологий обещает массовое распространение новых конструкционных материалов с порою уникальными свойствами и характеристиками. Наибольший интерес для инженеров и исследователей представляют углеродные материалы, из которых в настоящее время наиболее изученными, а также наиболее перспективными для целей практического применения являются углеродные нанотрубки (УНТ). Они обладают самым широким набором уникальных свойств, делающих их чрезвычайно перспективными для использования, в том числе в автомобилестроении. 
Баллистический характер электропроводности УНТ (электроны движутся, как бы скользя по поверхности, не встречая препятствий) позволит создавать высокоэффективные электропроводящие узлы различных машин и механизмов, в том числе автомобилей. 
Углеродные нанотрубки уже находят применение в конструкции современных автомобилей. Например, инженеры компании Toyota добавляет композиционный материал на основе УНТ в пластиковые бамперы и дверные панели своих автомобилей. Помимо повышения прочности и снижения массы, пластик со смолой из УНТ становится электропроводным, и его можно покрывать теми же красками с электрическим нанесением, что и металлические детали.
Электронные системы все более  тесно интегрируются в конструкцию  автомобиля. Существует тенденция дальнейшего  расширения использования электроники  в автомобилях с одновременным  усовершенствованием самой полупроводниковой  техники и появлении наноэлектроники и молекулярной электроники.
Нанотранзисторы, в том числе с нанотрубками в конструкции будут обладать рядом улучшенных характеристик и бесспорных преимуществ по сравнению с традиционными кремниевыми: 
    Повышенное быстродействие; 
    термо - и радиационная стойкость; 
    миниатюрность; 
    низкое энергопотребление и как следствие - незначительное тепловыделение при работе.
Большой интерес представляют нанотехнологии для создания перспективных автомобилей на топливных элементах. 
С помощью нанотрубок предполагается решить проблему надежного и безопасного хранения водорода на борту транспортного средства, так как наряду с металлами и жидкостями углеродные нанотрубки могут заполняться газообразными веществами и связывать большое его количество.
Китайские и американские ученые совместно  разработали нанолампочку, в которой нитью накаливания служит не вольфрамовая проволочка, а углеродные нанотрубки. Лампочка с УНТ более экономичная - при равном напряжении она испускает больше света. 
Сейчас конструкторы «гибридных»  автомобилей уже сталкиваются с  потребностью в компактных, легких и высокоемких аккумуляторных батареях. Стоит напомнить, что ставшие традиционными кислотные аккумуляторы не годятся, в силу большой массы, громоздкости, экологической «небезупречности». С ростом парка гибридов, а также с массовым появлением водородных автомобилей на ТЭ потребность в автономных источниках хранения электрической энергии возрастет еще больше. Нанотехнологии предлагают ряд решений данной проблемы. 
В силу того, что большинство автомобилей  будущего будет работать на электрической  тяге, гораздо больший интерес  станет представлять использование фотоэлементов в конструкции автомобиля. В этом отношении нанотехнология позволяет создавать долговечные, ультратонкие и гибкие преобразователи солнечного света. Кроме того, использование нанотехнологических принципов позволит получать солнечные панели с КПД до 80-90%. 
Кроме конструкции автомобиля, измениться структура самой автомобильной промышленности.
Так с появлением автоматизированной молекулярной нанотехнологии получит новое развитие уже наметившаяся тенденция - разделение функций разработки/проектирования автомобилей и их производства с окончательным закреплением приоритета за первой из перечисленных двух функций. Собственно в будущем автомобильные концерны будут только разрабатывать конструкции тех или иных моделей автомобилей для последующей продажи права на их производство методами поатомной сборки сторонним организациям. 
Тем самым не автомобиль будет товаром, а информация об особенности его конструкции, что будет полностью соответствовать модели новой экономической формации, где единственным предметом обмена станет информация. 
 
2.3. Проблемы и перспективы развития  нанотехнологий в машиностроении
 
Одним из реальных направлений достижения этих целей может стать ускоренное развитие нанотехнологий на основе накопленного научно-технического задела в этой области и внедрение их в технологический комплекс России.
Развитие  направлений науки, техники и  технологий, связанных с созданием, исследованиями и использованием объектов с наноразмерными элементами, уже в ближайшие годы приведет к кардинальным изменениям во многих сферах человеческой деятельности – в том числе и в машиностроении.
Новейшие  нанотехнологий наряду с компьютерно-информационными технологиями и биотехнологиями являются фундаментом научно-технической революции в XXI веке, сравнимым и даже превосходящим по своим масштабам с преобразованиями в технике и обществе, вызванными крупнейшими научными открытиями XX века.
В развитых странах осознание ключевой роли, которую уже в недалеком будущем будут играть результаты работ по нанотехнологиям, привело к разработке широкомасштабных программ по их развитию на основе государственной поддержки.
Так, в  2000 г. в США принята приоритетная долгосрочная комплексная программа, названная Национальной нанотехнологической инициативой и рассматриваемая как эффективный инструмент, способный обеспечить лидерство США в первой половине текущего столетия. К настоящему времени бюджетное финансирование этой программы увеличилось по сравнению с 2000 г. в 2,5 раза и достигло в 2003 г. 710,9 млн долл., а на четыре года, начиная с 2005 г., планируется выделить еще 3,7 млрд долл. Аналогичные программы приняты Европейским союзом, Японией, Китаем, Бразилией и рядом других стран.
В Казахстане работы по разработке нанотехнологий начаты еще 50 лет назад, но слабо финансируются и ведутся только в рамках отраслевых программ. К настоящему времени назрела необходимость формирования программы общефедерального масштаба с учетом признания важной роли нанотехнологий на самом высоком государственном уровне.
Разработка  и успешное освоение новых технологических  возможностей потребует координации  деятельности на государственном уровне всех участников нанотехнологических проектов, их всестороннего обеспечения (правового, ресурсного, финансово-экономического, кадрового), активной государственной поддержки отечественной продукции на внутреннем и внешнем рынках.
Формирование  и реализация активной государственной  политики в области нанотехнологий позволит с высокой эффективностью использовать интеллектуальный и научно-технический потенциал страны в интересах развития науки, производства, здравоохранения, экологии, образования и обеспечения национальной безопасности Казахстана.
Использование возможностей нанотехнологий может уже в недалекой перспективе принести значительный экономический эффект в машиностроении:
    Увеличение ресурса режущих и обрабатывающих инструментов с помощью специальных покрытий и эмульсий.
    Широкое внедрение нанотехнологических разработок в модернизацию парка высокоточных и прецизионных станков.
    Созданные с использованием нанотехнологий методы измерений и позиционирования обеспечат адаптивное управление режущим инструментом на основе оптических измерений обрабатываемой поверхности детали и обрабатывающей поверхности инструмента непосредственно в ходе технологического процесса. Например, эти решения позволят снизить погрешность обработки с 40 мкм до сотен нанометров при стоимости та кого отечественного станка около 12 тыс. долл. И затратах на модернизацию не более 3 тыс. долл. Равные по точности серийные зарубежные станки стоят не менее 300-500 тыс. долл. При этом в модернизации нуждаются не менее 1 млн активно используемых металлорежущих станков из примерно 2,5 млн станков, находящихся на балансе российских предприятий.
    В двигателестроении и автомобильной промышленности - за счет применения наноматериалов, более точной обработки и восстановления поверхностей можно добиться значительного (до 1,5-4 раз) увеличения ресурса работы автотранспорта, а также снижения втрое эксплуатационных затрат (в том числе расхода топлива), улучшения совокупности технических показателей (снижение шума, вредных выбросов), что позволяет успешнее конкурировать как на внутреннем, так и на внешнем рынках.
    В электронном и электротехническом машиностроении - расширение возможностей радиолокационных систем за счет применения фазированных антенных решеток с малошумящими СВЧ-транзисторами на основе наноструктур и волоконно-оптических линий связи с повышенной пропускной способностью с использованием фотоприемников и инжекционных лазеров на структурах с квантовыми точками; совершенствование тепловизионных обзорно-прицельных систем на основе использования матричных фотоприемных устройств, изготовленных на базе нанотехнологий и отличающихся высоким температурным разрешением; создание мощных экономичных инжекционных лазеров на основе наноструктур для накачки твердотельных лазеров, используемых в фемтосекундных системах.
    В энергетическом машиностроении - наноматериалы используются для совершенствования технологии создания топливных и конструкционных элементов, повышения эффективности существующего оборудования и развития альтернативной энергетики (адсорбция и хранение водорода на основе углеродных наноструктур, увеличение в несколько раз эффективности солнечных батарей на основе процессов накопления и энергопереноса в неорганических и органических материалах с нанослоевой и кластерно-фрактальной структурой, разработка электродов с развитой поверхностью для водородной энергетики на основе трековых мембран). Кроме того, наноматериалы применяются в тепловыделяющих и нейтронопоглощающих элементах ядерных реакторов; с помощью нанодатчиков обеспечивается охрана окружающей среды при хранении и переработке отработавшего ядерного топлива и мониторинга всех технологических процедур для управления качеством сборки и эксплуатации ядерных систем; нанофильтры используются для разделения сред в производстве и переработке ядерного топлива.
 
3. Нанотехнологии в автомобилестроении
 
Автомобили  будущего станут более комфортными  и интеллектуальными, основанными на легких и прочных материалах, миниатюризации и новых энергетических установках. Практически каждая деталь автомобиля может быть усовершенствована при помощи нанотехнологий. Сегодня нанотехнологии внедряют несколько крупнейших производителей, но в ближайшем будушем их будут использовать все автомобилестроители и большинство их поставщиков. 70 ведущих мировых автомобилестроителей, включая Renault, General Motors, BMW, Toyota, Audi, Ford, Volkswagen, Mercedes-Benz, Opel, Ferrari, MAN, FIAT, Volvo, Hyundai, Honda, Nissan, Chrysler, Jaguar, Porsche, Peugeot, Saab, Rover, Citroen, Huachangcar, Mazda, Alfa Romeo, Asia Motors, Mitsubishi, Vauxhall, Subaru и др., провели совместное исследование возможностей применения нанотехнологий в автомобилях с 2002 до 2015 года.
 
 
3.1 Применение нанотехнологий в автомобильной промышленности
 
Автомобильная промышленность Германии, являющаяся одной из наиболее важных отраслей производства, уже сейчас серьезно заинтересована в НТ и активно изучает возможности внедрения новых материалов и технологий, особенно в связи с экологией, безопасностью движения и обеспечением комфорта. НТ в автомобилестроении может быть связана с решением множества проблем и технических задач, относящихся к ходовой части, весу конструкции и динамике движения, кондиционированию и снижению выхлопа вредных веществ, уменьшению износа, возможностям вторичной переработки и т. п. Кроме этого, НТ имеют непосредственное отношение к развитию связанных с автомобилестроением информационных систем (например, контроль обстановки на дорогах, коммуникации и т. п.).
Очень большие  перспективы коммерческого производства имеет внедрение прозрачных многослойных наноматериалов. В частности, наносимые на стекло металлические покрытия толщиной в несколько нанометров могут одновременно отражать инфракрасное излучение и придавать стеклу дополнительную термостойкость. Для затемненных внутренних стекол в автомобилях можно даже использовать так называемые электрохромные составы, которые автоматически настраиваются на соответствующую интенсивность света, а также способствуют уменьшению отражения в циферблатах приборов, что очень трудно осуществить обычными методами. Водоотталкивающие и противоударные покрытия могут наноситься на множество деталей, включая «дворники» и т. п. Еще один очень интересный пример связан с применением микроскопических частиц углерода. В начале 20 века было случайно обнаружено, что введение микрочастиц сажи в каучук приводит к очевидному улучшению качества автомобильных шин. Эффект связан с тем, что частицы сажи «склеивают» каучук и делают шины прочнее, обеспечивая их повышенную износостойкость. Сегодня уже предпринимаются целенаправленные попытки увеличения поверхности частиц сажи и уменьшения их возможного слипания, что позволяет снизить процессы рассеивания (диссипации) энергии в шинах и приводит в целом к повышению их характеристик и снижению расхода горючего в среднем на 4%.
Соответствующая оптимизация сопротивления воздуха, веса автомобиля и приводного устройства привела бы к снижению потребления горючего на 6%, 15% и 28%, в результате чего можно было бы уменьшить выбросы двуокиси углерода. Намеченное Евросоюзом снижение норм выброса угарного газа и частиц (программа Евро-5) к 2008 году может быть достигнуто только путем значительного понижения потребления горючего, для чего настоятельно требуется поиск альтернативных источников питания. Например, в качестве автомобильного топлива очень перспективен экологически почти безопасный метанол, и НТ может сыграть важную роль в производстве новых методик впрыскивания горючего, реформинге топлива, аккумуляции водорода, объединении клеточных электродов и мембран для обмена протонов при сгорании топлива и т. п.
Более конкретно, можно отметить, что эффективное  использование метанола (и многих других видов топлива) требует обеспечения измельчения жидкого горючего и его микродисперсной пульверизации по заданным поверхностям, для чего весьма перспективными представляются матрицы из нанофорсунок. Подобные «нанореактивные» двигатели можно производить, создавая микроскопические (и даже субмикроскопические) каналы в материалах типа кремния или его соединений. Аналогичные наноканалы могут применяться в перспективных технологиях получения водорода из твердых видов топлива, для чего внутренняя поверхность каналов может дополнительно покрываться слоем каталитического материала типа платины.
Нанопористые материалы могут применяться и для разложения многих соединений (например, воды на водород и кислород) при использовании мембран с очень развитой поверхностью. Кроме того, микропористые вещества с большой и активной поверхностью, очевидно, представляют собой прекрасную основу для создания новых типов фильтров, механически задерживающих требуемые типы частиц.
В будущем  развитие энергетики, возможно, будет  связано с массовой заменой твердых  видов топлива и горючих веществ  на водород, который необходимо будет аккумулировать в специально создаваемых устройствах, и именно в этом наноматериалы (например, сложные фуллерены) могут оказаться исключительно полезными. Уже сейчас эксперты планируют создание емкостей-хранилищ водорода на основе фуллеренов с 10% эффективностью.
Наноструктурные материалы позволяют изготавливать легкие и одновременно достаточно прочные конструкции для некоторых деталей массового производства. Например, конструкторы автомобилей много лет создают покрытия из стекла, которые были бы прочными, но которые можно было бы быстро разбить при необходимости (аварии, кражи и т. п.). Инновационный заменитель стекла можно создать на основе поликарбоната (ПК), то есть искусственного материала, из которого делают известные всем диски CD и DVD. Это «умное» устройство (изогнутое сложным образом в некоторых частях кузова, сзади и сбоку) можно изготовить из ПК таким образом, чтобы его нельзя было никак заменить стеклянным аналогом. Для этого к поликарбонату следует просто примешать различные отбеливающие пигменты (в виде наночастиц), которые, с одной стороны, остаются прозрачными, а с другой, — защищают стекло от разрушающего воздействия ультрафиолетового излучения. Повышенная прочность к механическим повреждениям в этом случае достигается использованием нанолаков на основе полиоксанов.
 
3.2 Перспективы нанотехнологии в автомобильной промышленности
 
Перспективы нанотехнологии в автомобильной промышленности сейчас во многом связываются с использованием наноструктурных (нанофазных) металлических материалов, обладающих огромной прочностью и другими высокими механическими характеристиками, а также с производством новейших типов металлокерамики. Разрабатывается большое число лаков на основе наносистем, обладающих не только высокой прочностью, но и даже способностью к «самозалечиванию» поверхности. Кроме того, изучаются возможности армирования керамических материалов наночастицами, а также развития новых методик создания стеклокерамики. При этом во многих случаях исследователи уже планируют осуществлять автономную или местную «регенерацию» вещества на основе наполненного наночастицами искусственного материала, а также придавать описанный выше эффект самоочищения «лотоса» всем используемым лакам и стеклам.
В лабораторных условиях уже изучаются сложные  пигментные структуры, цвет которых может целенаправленно изменяться под воздействием прилагаемого электрического напряжения, что имеет огромные перспективы для оформления интерьера автомобилей. Упоминавшиеся выше ферромагнитные жидкости (взвеси магнитных частиц, феррофлюиды) также могут найти широкое применение в автомобильной промышленности. Такие вещества, меняющие вязкость в зависимости от прилагаемого извне магнитного поля, являются исключительно важными для создания «умных» амортизаторов в автомашинах следующих поколений, и уже созданы опытные образцы устройств такого типа.
 
3.3 Нанотехнологии в техническом обслуживании
 
Сфера нанотехнологий считается во всем мире ключевой темой для технологий XXI века. Возможности их разностороннего применения в таких областях экономики, как производство полупроводников, медицина, сенсорная техника, экология, автомобилестроение, строительные материалы, биотехнологии, химия, авиация и космонавтика, машиностроение и текстильная промышленность, несут в себе огромный потенциал роста. Применение продукции нанотехнологий позволит сэкономить на сырье и потреблении энергии, сократить выбросы в атмосферу и будет способствовать тем самым устойчивому развитию экономики.
Антикоррозионные составы
Накопленный опыт в области наноразмерных частиц позволил немецким ученым из Института новых материалов в Саарбрюккене заявить о возможности создания в скором времени ингибиторов коррозии нового поколения. Руководитель института профессор химии Хельмут Шмидт обрисовал принцип действия новых ингибиторов следующим образом: «…к стандартному покрытию автомобиля мы подмешиваем наночастицы, выполняющие функцию ингибиторов коррозии, причем придаем им такие свойства, чтобы они в случае необходимости обеспечивали быструю диффузию соответствующих компонентов покрытия в зону повреждения и как бы затягивали рану». То, что такие ингибиторы коррозии обладают способностью свободно перемещаться внутри твердого лакокрасочного покрытия, профессором Шмидтом было доказано уже десять лет назад. Тогда ему удалось обнаружить, что наночастицы на металлической, стеклянной или керамической поверхностях ведут себя как ионы в свободном растворе. Говоря иными словами, они стремятся обеспечить и поддерживать во всем объеме равновесие, а любой перепад концентрации, вызванный, к примеру, царапиной на лакокрасочном покрытии, тотчас выровнять за счет диффузии.

Двигатель
Значительный потенциал несут  в себе разработки новых материалов, которые могут быть использованы для конструирования новых автомобильных двигателей. Растущие год от года требования к показателям экономичности двигателей и снижению токсичности выхлопа заставляют автомобильных конструкторов вести активный поиск альтернативных чугуну и стали материалов. В качестве одного из наиболее перспективных, способных стать основой для создания новых моделей двигателя материалов рассматривается модифицированный нанокомпозитными материалами пластик. Теоретически использование таких полимеров позволит значительно упростить сам процесс изготовления различных деталей двигателя, параллельно улучшится и их точность. Показатели жесткости и прочности модифицированного пластика близки к тем, что демонстрируют металлы, но при этом пластик гораздо легче, а его использование в конструкции автомобильного двигателя позволит значительно улучшить коррозионную устойчивость деталей, снизить уровень шумов двигателя, уменьшить технологические допуски.
Существенно продлить срок службы деталей, работающих в условиях экстремально высоких температур, таких, как свечи зажигания/накала, топливные форсунки и другие элементы камеры сгорания, может начало использования в них нанокристаллических компонентов.
Нанообработка и защита двигателя
Нанозащита двигателя образует высокоэффективный наноборьер в системе смазки, который при распределении наночастиц обеспечивает минимальный коэффициент трения. Смазываются уплотнения, уплотнительные кольца круглого сечения. Обеспечивает максимальную защиту механизмов от износа, мягкую работу двигателя, увеличивает мощность двигателя, продлевает срок службы узлов и агрегатов, снижает расход топлива.
Наноочистка впускной системы
Наноочистка впускной системы(дизель,бензин) - полностью очищает впускной коллектор, впускные и выпускные клапана, камеру сгорания двигателя,без разборки. За счет целенаправленной очистки двигатель работает более устойчиво, снижается расход топлива и выброс отработавших газов.
Очищение автоматической коробки передач
С помощью новейшего высокоэффективного наносредства полностью растворяется и удаляется из масляной системы автоматических коробок передач загрязнения и отложения. Удаляются окисленные масляные осадки. Вся система смазки полностью очищается. Восстанавливается четкость переключения передач. Увеличивает срок службы АКПП.
 
Защита автоматических коробок  передач
Использование высоактивных нано средств позволяет существенно снизить трение и износ. Облегчает переключение передач и поддерживает уплотнения в рабочем состоянии. В результате увеличивается срок службы агрегатов.Совместимо со всеми маслами для АКПП. Это последнее слово в технологии производства жидкостей для АКПП.
 
Амортизаторы
Добавление в специальную жидкость наночастиц магнетита (оксида железа) с особым покрытием превращает ее в феррожидкость, вязкость которой можно изменять с помощью магнита. В современном автомобилестроении данный материал уже нашел свое практическое применение в качестве регулируемых по высоте амортизаторов.
Стекла
Проводятся испытания электрохромной системы с целью ее использования в качестве покрытия для боковых и салонных зеркал. В процессе химической обработки ионы лития перемещаются, и атомы образуют ультратонкий слой, который меняет светопропускную способность стекла, создавая эффект затемненности.
С использованием диоксида титана (TiO2) разработана технология самоочищающихся  поверхностей. При попадании ультрафиолетового  излучения на нанопокрытие из TiO2 происходит фотокаталитическая реакция, в результате которой содержащиеся в воздухе молекулы воды превращаются в сильные окислители — радикалы гидроокиси (HO), которые окисляют и расщепляют грязь.
Успешно продвигаются работы с учетом новых возможностей новой технологии по разработке солнечных батарей. Уже  запущен в мелкосерийное производство вариант автомобильной крыши, покрытой слоем кремниевых фотоэлементов мощностью 30 Вт.
Дизельные двигатели
Нанозащита и обработка дизельного двигателя помогает надежно удалить мельчайшие загрязнения от топливного бака до камеры сгорания. Удаляются нагары, смолистые и коксовые отложения в системе впрыска топлива. Гарантируется смазывание всех элементов топливной системы и их защита. Нанозащита препятствует появлению продуктов окисления топлива и росту микроорганизмов. Обеспечивает оптимальное распыление топлива и увеличивает КПД двигателя. Разрушает водяные пузырьки в дизельном топливе и обеспечивает соответствие параметров выхлопа экологическим нормам.
 
Новая высокоэффективная очистка  дизельной системы надёжно удаляет  возникшие в процессе эксплуатации автомобиля загрязнения во всей дизельной системе от бака до камер сгорания. Без остатков удаляются осмоления, клейкие вещества в форсунках и наносах впрыска топлива, остатки коксования и отложения сажи в области цилиндров. Нанообработка препятствует окислению топлива и росту микроорганизмов, смазывает и защищает всю систему питания. Улучшается распыление топлива и увеличивается мощность двигателя.
Бензиновые двигатели
Высокоэффективная очистка нового поколения. Позволяет удалить загрязнения и нагары, модифицирует влагу и конденсат в топливной системе автомобиля от бака до камеры сгорания. Удаляются смолисто-коксовые остатки и отложения сажи в головке блока цилиндров, смазывается и образуется защитный слой от коррозии и ржавчины. Не содержит компонентов, разрушающих катализаторы и турбокомпрессоры.

Трение
Одной из наиболее динамично развивающихся  областей нанотехнологий в секторе автомобилестроения является разработка и производство высокоэффективных антифрикционных, противоизносных и охлаждающих составов. Опытным путем было установлено, что применение данных составов приводит к сокращению расхода топлива на 2–7%, износу деталей в 1,5–2,5 раза, увеличению мощности двигателя на 2–4%.
Добавление наночастиц в автомобильные шины увеличивает их гибкость и уменьшает износ.
Отдельного разговора заслуживают  перспективы развития и совершенствования электронных компонентов автомобиля с использованием современных возможностей нанотехнологии.
Не приходится сомневаться в  том, что со временем все без исключения детали автомобиля будут нести на себе отпечаток нанотехнологического вмешательства. Не исключено, что лет эдак через …надцать у кого-то его любимый автомобиль будет похож на ковер-самолет, ну а у поклонников активного образа жизни — на сапоги-скороходы.
 
3.4 Автомобили будущего
 
Автомобили будущего. Нанотехнологии определяют форму
Автопромышленность  стала одной из первых отраслей, где быстро поняли выгоду нанотехнологий. В автомобиле сложно изобрести что-то принципиально новое; его основные элементы десятилетиями остаются все теми же — кузов, двигатель, подвеска, тормозная система, электрооборудование... приходится лишь совершенствовать каждый компонент. Концепт-кары ведущих мировых автодизайнеров поражают футуристичностью форм и технических решений. А воплощение в жизнь смелых идей уже невозможно без применения нанотехнологий.
Авто  будущего — какое оно? Может, это  машина, кузов которой запросто выдерживает столкновения на скорости 300 км/ч и практически не деформируется? Или автомобиль, самостоятельно «зализывающий» царапины, которыми его «наградили» при парковке? Либо… воплощение киношного фантастического прототипа — машина, которая использует в качестве топлива содержимое мусорных бачков. Точь-в-точь DeLorean из «Назад в будущее». Разве что не летает... Хотя...
Команда «На взлет!»
2007 Giugiaro VAD.HO (еду на водороде)
Раздайся  на стенде компании Italdesign Giugiaro в Женеве команда: «На взлет!», никто бы не удивился. Концептуальный суперкар VAD.HO, конечно, рожден ездить, но и летать вполне мог бы. Салон здесь совсем не салон, а двухместный кокпит, накрытый прозрачным фонарем. О приборной начинке уместнее сказать «авионика»: информационные дисплеи EFIS (Electronic Flight Information Systems) взяты прямо из летного арсенала.

Генералы  Aeronautica Militare Italiana (AMI), не раздумывая, приняли бы Giugiaro VAD.HO на «вооружение»
Сама  по себе смещённая к борту кабина не новость – такими щеголяли еще  гоночные монопосто середины прошлого века, но вот чтобы мотор располагался сбоку от кокпита, да не простой двигатель внутреннего сгорания, а экологически безопасный «водородный» V12 от спецверсии «семерки» BMW... Нет, такого еще не было ни на суперкарах, ни на самолетах.
Идем  ко дну
Эта машина не летает. Зато плавает — точно!
Rinspeed sQuba
У швейцарской  компании Rinspeed уже есть опыт разработки рабочих прототипов автомобилей-амфибий. Нашумевшая модель Splash на подводных крыльях установила мировой рекорд, переплыв Ла-Манш за 3 часа 13 минут 47 секунд.

Rinspeed sQuba не тонет. Автоподлодка от швейцарской тюнинговой компании Rinspeed
Насмотревшись фильмов про Джеймса Бонда, швейцарцы  воодушевленно стали разрабатывать… «подводный» автомобиль. Опыт удался - концепт Rinspeed sQuba был представлен на Женевском автосалоне.
 

 
Автомобиль-подлодка, элементы которого выполнены на основе углеродных нанотрубок, а салон инкрустирован обыкновенными жемчугом и бриллиантами
Концепт представляет собой первый в мире двухместный родстер, способный передвигаться под водой. Движение осуществляется за счет двух водоструйных двигателей, расположенных в «кормовой части». Для удобства водителя и пассажира, которые с головой окунутся в воду (верх автомобиля — открытый), предусмотрено специальное устройство для дыхания, похожее на кислородную маску акваланга.
Morgan Lifecar
Нанотехнологии в автомобилестроении используются для усовершенствования практически каждого блока и даже каждой детали — от двигателя до самореза. А что касается автомобилей будущего, тех, на которых мы будем ездить всего-то через пару десятков лет, то здесь фантазия автопроизводителей, пожалуй, нуждается разве что в том, чтобы ее кто-нибудь утихомирил.
 

 
«Пришелец»  из будущего: Morgan Lifecar от британской компании Morgan Motor Company. Сделан из самых современных материалов
Звезды  трансформеров
С помощью  нанотехнологий привычный автомобиль можно преобразить так, что его не узнали бы ни Готлиб Даймлер, ни Генри Форд, ни кто-то другой, стоявший «у истоков».
Audi Virtuea Quattro
Взять, например, концепт «автомобиля будущего»  от Audi — Virtuea Quattrо, разработанный в центре дизайна Audi/VW в Калифорнии. Этот автомобиль работает, естественно, на водороде, и рассчитан на одного человека. Virtuea Quattro будет формировать свой внешний облик при помощи голографических изображений, программировать которые сможет сам водитель через многофункциональный интерфейс.
 

 
Наводящий галлюцинации концепт Audi — Virtuea Quattro. Запросто может прикинуться бетономешалкой
Миллионы  схем, заложенных в память бортового  компьютера Virtuea Quattro, позволят выбрать для машины любой «наряд» – от средневековой кареты или болида 1950-х до … пожалуй, до имитации «облика» соковыжималки. Или ракетного крейсера — это уж как ваша душа пожелает.
Автомобили будущего. Нанотехнологии определяют форму
Mercedes-Benz SilverFlow
Совсем  скоро на смену целому «зоопарку» типов кузовов придет один, способный  менять свою форму в зависимости  от конкретного запроса водителя. Корпус «Мерседеса» — это магнитное соединение (металлические наночастицы удерживаются вместе магнитными полями), которое может восстанавливать свою форму по одному клику на брелоке сигнализации или внутри автомобиля. Водитель сможет выбирать тип корпуса авто из нескольких возможных «предустановленных» скинов. Выбор цвета машины просто неограничен — мечта для девушек, подбирающих себе автомобиль под цвет любимой губной помады.
Магнитные поля помогут концепту мгновенно  регенерировать после удара. SilverFlow восстанавливает свою первоначальную форму простой «перезагрузкой».
 

 
SilverFlow — рождение формы. Появление золотых областей будет информировать о завершении «трансформации» и готовности автомобиля к поездке
Передача  механической энергии к колёсам, по мыслям мерседесовцев, передаётся специальной жидкостью, молекулы которой приводятся в движение электростатическими наномоторами. Четыре поворотных колеса позволят автомобилю разворачиваться на месте и парковаться боком. Руля и привычных педалей в SilverFlow вы не найдёте, ускорение и направление движения будут задаваться двумя рычагами, установленными по бокам водительского места.

Mercedes-Benz SilverFlow — «серебряный поток». По команде «Слиться!» паркуется куда угодно. Например, в ведро.
Автомобиль  в исходном состоянии представляет собой небольшой эллипсоид из ферромагнетика — такая лужица жидкого металла, которую гораздо легче хранить, нежели полноразмерный автомобиль. Больше не придется впадать в отчаяние, в двадцать пятый раз нарезая круги вокруг офисной стоянки. Слил машину в ведерко для игры в песочек и бережно принес с собой в офис.
Вот только что будет, если по забывчивости дашь команду автомобилю «слиться», оставив  внутри пассажиров, разработчик концепта почему-то молчит…
Toyota Biomobile Mecha
2057 год.  Ограниченное пространство городских  улиц и вертикальная архитектура  требуют от автопрома создания новейших автомобилей, которые смогут выжить в городских джунглях и устраивать гонки по вертикали. Инновационные решения автопроизводители находят в биомимикрии.

«Мусороуборочная» Toyota Biomobile MECHA. Четыре нанолазерных колеса легко приспосабливаются к любой трассе
Да, это  не DeLorean. Тем не менее «это» точно так же, как и культовый «киношный» DMC, работает на содержимом мусорных бачков. Так захотела Toyota. А еще ее концепт Mecha действительно исполняет функцию мусорщика, собирая и используя рассеянные в воздухе частицы вредных газов: двигаясь, авто попутно очищает атмосферу.
Колеса  из практически нематериальных «нанолазеров» позволят автомобилю ездить в любом направлении и с любым наклоном, а корпус (внимание, на этот раз уже не облик, как у Audi, а корпус!) сможет трансформироваться в соответствии с дорожными условиями, увеличиваясь или сжимаясь в размерах и не снижая аэродинамических свойств автомобиля.
Можно и  самому поуправлять внешним видом. Надо вам спорткар? Заберите. А если вам неожиданно приспичило перевезти комод и телевизор, то ваш спорткар превращается… превращается… ну, допустим, в фургончик. Хорошо постаравшись, можно даже обеспечить себе машину со спальным местом. Если скрестить разработку Toyota с идея
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.