На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Курсовик Изучение основных определений и теорем, связанных с полукольцом натуральных чисел, описание его нулевого, главного и двухпорожденного идеалов. Исследование проблемы нахождения констант Фробениуса для аддитивной полугруппы, порожденной линейной формой.

Информация:

Тип работы: Курсовик. Предмет: Математика. Добавлен: 12.06.2010. Сдан: 2010. Уникальность по antiplagiat.ru: --.

Описание (план):


Министерство образования и науки РФ
Государственное образовательное учреждение высшего профессионального образования
Вятский государственный гуманитарный университет
Физико-математический факультет
Кафедра высшей математики
Выпускная квалификационная работа
Строение идеалов полукольца натуральных чисел
Выполнила студентка V курса
физико-математического факультета
Вахрушева Ольга Валерьевна
Научный руководитель: д.ф-м.н., профессор кафедры высшей математики Чермных В. В. Рецензент: д.ф-м.н., профессор, заведующий кафедрой высшей математики Вечтомов Е.М.
Киров 2010
Содержание
Введение
Глава 1. Структура идеалов в
1.1 Базовые понятия и факты
1.2 Описание идеалов в
Глава 2. Константа Фробениуса
Библиографический список
Приложение 1. Примеры работы программы "FindC" для различных исходных данных
Приложение 2. Описание алгоритма работы программы с помощью блок-схем
Приложение 3. Полный текст программы "FindC"
Введение
Теория полуколец - один из интенсивно развивающихся разделов общей алгебры, являющийся обобщением теории колец. Весомый вклад в ее изучение и развитие внесли Е.М. Вечтомов и В.В. Чермных. Большой интерес для изучения представляет собой полукольцо натуральных чисел с обычными операциями сложения и умножения. Его роль в теории полуколец примерно такая же, как и кольца целых чисел в теории колец. Вопросу строения полукольца натуральных чисел посвящена глава в книге В.В. Чермных "Полукольца" [6].
Целью данной квалификационной работы является исследование полукольца натуральных чисел и его строения. Более точно выясняется вопрос, как устроены идеалы этого полукольца, а также осуществляется отыскание либо определение границ расположения константы Фробениуса для некоторых идеалов.
Выпускная квалификационная работа состоит из двух глав. В главе 1 представлены основные определения и теоремы, связанные с полукольцом натуральных чисел, и дано описание его идеалов. Глава 2 посвящена исследованию проблемы нахождения константы Фробениуса.
Глава 1. Структура идеалов в
1.1 Базовые понятия и факты
Определение 1. Непустое множество S с бинарными операциями "+" и "" называется полукольцом, если выполняются следующие аксиомы:
1. (S, +) коммутативная полугруппа с нейтральным элементом 0;
2. (S, ) полугруппа с нейтральным элементом 1;
3. умножение дистрибутивно относительно сложения:
a(b + c) = ab + ac, (a + b)c = ac + bc для любых a, b, c S;
4. 0a = 0 = a0 для любого a S.
По этому определению полукольцо отличается от ассоциативного кольца с единицей отсутствием операции вычитания, и именно это вызывает основные трудности при работе с полукольцами.
Несложно показать, что множество натуральных чисел с обычными операциями сложения и умножения при допущении, что , является полукольцом.
Определение 2. Непустое подмножество I полукольца S называется левым идеалом полукольца S, если для любых элементов элементы a+b и sa принадлежат I. Симметричным образом определяется правый идеал. Непустое подмножество, являющееся одновременно левым и правым идеалом, называется двусторонним идеалом или просто идеалом полукольца S.
В силу коммутативности операции умножения в полукольце все идеалы являются двусторонними, в дальнейшем будем называть их просто идеалами.
Идеал, отличный от полукольца S, называется собственным.
Определение 3. В полукольце S наименьший из всех идеалов, содержащих элемент , называется главным идеалом, порожденным элементом a.
Известно, что кольцо целых чисел является кольцом главных идеалов. Идеалы в не обязательно являются главными, но все они конечно порождены. Главные идеалы в будем обозначать aN, где a - элемент, порождающий идеал.
Определение 4. Идеал коммутативного полукольца называется конечно порожденным, если найдется конечное множество элементов таких, что
Теорема 1. Произвольный идеал полукольца натуральных чисел конечно порожден.
Доказательство. Пусть - произвольный идеал из , - его наименьший ненулевой элемент. Выберем, если возможно, наименьший элемент из N. В общем случае на очередном шаге будем выбирать наименьший элемент из множества . Заметим, что выбираемые элементы обязаны быть несравнимыми по модулю . По этой причине процесс выбора будет конечным, и на некотором шаге получим
Определение 5. Пусть - идеал полукольца натуральных чисел. Множество элементов из назовем системой образующих идеала, если и никакой элемент системы образующих нельзя представить в виде комбинации с неотрицательными коэффициентами остальных элементов системы.
Очевидно, что для любого идеала система образующих определяется однозначно. Множество элементов , построенное в доказательстве теоремы 1, является системой образующих.
Если имеется в виду конкретная система образующих идеала, то будем изображать ее в круглых скобках, например: (2,3)={0,2,3,4,…}= \{1}.
Аналог теоремы Гильберта о базисе, которая утверждает, что если R - коммутативное кольцо, каждый идеал которого конечно порожден, то любой идеал кольца многочленов над R является конечно порожденным, неверна в классе полуколец, и примером тому служит полукольцо . Как установлено, идеалы в конечно порождены. Покажем, что этим свойством не обладает полукольцо [x]. Пусть I - множество всех многочленов ненулевой степени над . Ясно, что I ? идеал. Любой из многочленов x, x+1, x+2,…, нельзя нетривиальным образом представить в виде суммы многочленов из I, значит, все эти многочлены необходимо лежат в любой системе образующих идеала I. Таким образом, I не является конечно порожденным, и полукольцевой аналог теоремы Гильберта не верен.
Теорема 2. Пусть ? система образующих идеала полукольца . Начиная с некоторого элемента , все элементы идеала образуют арифметическую прогрессию с разностью , являющейся наибольшим общим делителем чисел .
Доказательство. Пусть ? НОД всех представителей системы образующих идеала . По теореме о линейном представлении НОД для некоторых целых . Положим ? максимум из абсолютных значений чисел . Тогда элементы и лежат в идеале . Очевидно, что ? наименьшее натуральное число, на которое могут отличаться два элемента идеала , и . Обозначим . Пусть , для некоторых целых , и одно из них, допустим , неположительно. В таком случае рассмотрим число с такими достаточно большими натуральными коэффициентами , чтобы для любого целого выполнялось . Тогда для любого такого элемент
лежит в . Таким образом, начиная с элемента , мы имеем арифметическую прогрессию в точности из элемента, лежащих в идеале , причем первый и последний элементы отличаются на . Прибавляя к каждому из этих элементов, начиная с , число , мы получим следующие элементов этой же прогрессии. Такую процедуру можно повторять сколь угодно долго, получая элементы прогрессии, очевидно, лежащие в идеале . Показали, что, по крайней мере, с числа все элементы идеала образуют арифметическую прогрессию.
Следствие 1. Пусть ? произвольный идеал полукольца . Существует такое конечное множество элементов из , что является главным идеалом.
Следствие 2. Если система образующих идеала полукольца состоит из взаимно простых в совокупности чисел, то, начиная с некоторого элемента, все последующие натуральные числа будут принадлежать идеалу .
Замечание. Пусть , и . Между идеалами и , порожденными системами образующих и соответственно, существует простая связь, а именно: состоит из всех элементов идеала , умноженных на число . Тем самым, изучение идеалов полукольца натуральных чисел сводится к идеалам с взаимно простой системой образующих. В дальнейшем будем считать, что образующие идеала в совокупности взаимно просты и занумерованы в порядке возрастания.
Теорема 3. В полукольце всякая строго возрастающая цепочка идеалов обрывается.
Доказательство. Пусть ? возрастающая цепочка в . Тогда ? конечно порожденный идеал с образующими . Каждый лежит в некоторых идеалах из цепочки, значит, найдется идеал из цепочки, содержащий все элементы . Получаем , следовательно, ? последний идеал в нашей цепочке.
Из доказанной теоремы делаем вывод о том, что исследуемое полукольцо натуральных чисел является нетеровым.
1.2 Описание идеалов в
Определение 6. Собственный идеал P коммутативного полукольца S называется простым, если или для любых идеалов A и B.
Теорема A. Если S - коммутативное полукольцо, то идеал P прост тогда и только тогда, когда влечет [6].
Простыми идеалами в являются, очевидно, нулевой идеал и идеалы p. Идеал, порожденный составным числом, не может быть простым. Более того, если составное число n=ab является элементом системы образующих идеала I, то элементы a,b не лежат в идеале I, и следовательно, I не прост. Таким образом, система образующих простого идеала может состоять только из простых чисел.
Пусть P - простой идеал в , не являющийся главным, и ? элементы из его системы образующих. Поскольку и взаимно просты, то по второму следствию теоремы 2 все натуральные числа, начиная с некоторого, лежат в идеале P. Значит, P содержит некоторые степени чисел 2 и 3. В силу простоты идеала P, 2 и 3 будут лежать в P. Идеал, порожденный числами 2 и 3, является единственным простым идеалом, не являющимся главным.
Таким образом, простыми идеалами полукольца являются следующие идеалы, и только они:
1. нулевой идеал;
2. главные идеалы, порожденные произвольным простым числом;
3. двухпорожденный идеал (2,3).
Определение 7. Собственный идеал M полукольца S называется максимальным, если влечет или для каждого идеала A в S.
Теорема Б. Максимальный идеал коммутативного полукольца прост.[6]
В нулевой идеал и идеалы, порожденные произвольным простым числом, не являются максимальными, так как включены в идеал (2,3), который не совпадает с ними и с . Таким образом, максимальным является двухпорожденный идеал (2,3) - наибольший собственный идеал в .
Множество простых идеалов можно упорядочить следующим образом:
Здесь наибольшим элементом является двухпорожденный идеал (2,3), а наименьшим - нулевой идеал.
Определение 8. Идеал I полукольца S называется полустрогим, если влечет
Теорема 6. Полустрогий идеал полукольца в точности является главным идеалом.
Доказательство. Главные идеалы, очевидно, являются полустрогими. Предположим, что в системе образующих полустрогого идеала может быть больше двух образующих. Пусть два элемента m и n - наименьшие в системе образующих идеала, и Рассмотрим равенство m+x=n, в нем x очевидно меньше, чем n. Это означает, что x принадлежит идеалу только в том случае, когда элемент x представим в виде x=ms, где . Тогда n линейно выражается через m, а противоречит тому, что m и n - образующие.
Множество полустрогих идеалов можно упорядочить следующим образом:
Здесь наибольшим является идеал, порожденный 1, на уровень ниже его находятся идеалы, порожденные простыми числами, еще ниже - порожденные произведением двух простых чисел, дальше трех и так далее.
Определение 9. Идеал I полукольца S называется строгим, если влечет и
Cтрогий идеал обязательно является полустрогим, а в полукольце и главным. Идеалы (0) и (1), очевидно, являются строгими. В любых других главных идеалах их образующие можно представить в виде суммы 1 и числа, на 1 меньше образующей, и оба этих слагаемых не будут принадлежать I. Таким образом, строгими идеалами полукольца являются только (0) и (1).
Глава 2. Константа Фробениуса
В теории полугрупп есть понятие константы Фробениуса, им описывается для аддитивной полугруппы, порожденной линейной формой с натуральными коэффициентами, переменные которой независимо принимают це и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.