На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


реферат Роль метеорологических станций в климатологии

Информация:

Тип работы: реферат. Добавлен: 13.09.2012. Сдан: 2011. Страниц: 4. Уникальность по antiplagiat.ru: < 30%

Описание (план):


ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ
ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧЕРЕЖДЕНИЕ
ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
МОСКОВСКИЙ  ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ 
 

Нижневартовск, 2011
 
 
 
 
 
Дисциплина:  Физика среды и ограждающих конструкций
Тема: Роль метеорологических станций в климатологии 
 

      Выполнил  студент: Грищенко С.В.
Курс, группа: 3-ПГС-НВ
Проверил: Ковалев А.О. 

 

СОДЕРЖАНИЕ 

 

    Наблюдение и эксперимент в метеорологии
     Фактические сведения об атмосфере, погоде и климате  получают из наблюдений. Анализ результатов наблюдений служит в метеорологии и климатологии для выяснения причинных связей в изучаемых явлениях.
     В общей физике основным методом исследования является эксперимент. Экспериментируя, исследователь вмешивается в ход физических процессов, меняет условия, в которых они протекают, вводит одни факторы и исключает другие с целью выяснения причинных связей в явлениях. Но атмосферные явления крупного масштаба, такие, как общая циркуляция атмосферы или теплооборот на больших пространствах, еще не могут быть существенно изменены вмешательством человека. Даже энергия термоядерных взрывов невелика по сравнению с энергией процессов циркуляции атмосферы, поскольку взрывы при большой их мощности весьма кратковременны. Изменения в физическом состоянии атмосферы, которые создаются термоядерными взрывами, оказываются ограниченными по распространению их влияния и недолговременными (речь идет о физических процессах, а не о заражении атмосферы радиоактивными продуктами распада). Поэтому метеорология, как и другие геофизические науки, должна прибегать к наблюдениям, т. е. к измерениям и качественным оценкам процессов, протекающих в природной обстановке. Непрерывно наблюдая за атмосферными процессами, человек является зрителем и регистратором тех грандиозных опытов, которые ставит сама природа, без его участия.
     В ограниченных пределах в метеорологии применяется и эксперимент. К  числу метеорологических экспериментов  относятся, например, опыты осаждения облаков и рассеяния туманов путем различных физико-химических воздействий на них. Такие опыты преследуют практические цели, но они позволяют также глубже разобраться в природе явления. Насаждение лесных полос, создание водохранилищ, орошение местности и т. п. вносят некоторые изменения в состояние приземного слоя воздуха. Тем самым и они в некоторой степени являются средствами метеорологического (точнее, климатологического) эксперимента.
     Применяется и моделирование некоторых атмосферных  процессов в лаборатории, т. е. воспроизведение их в малом масштабе и при упрощенных условиях. Так, например, моделируется даже общая циркуляция атмосферы. Возможности такого метода исследования также ограничены.  

    Статистический и физико-математический анализ
     Результаты  наблюдений подвергаются анализу в  целях выяснения закономерностей, существующих в атмосферных процессах. Первостепенное значение имеет в метеорологии статистический анализ большого материала наблюдений, особенно применение осреднения, которое отсеивает случайные детали явлений и яснее показывает их существенные особенности.
       Особенно велика роль этого  метода для климатологии. Климатология  берет в качестве исходного материала результаты метеорологических наблюдений; эти результаты сопоставляются, сравниваются во времени и пространстве. Для полного представления о климате недостаточно наблюдений единовременных или в течение коротких промежутков времени. Атмосферные процессы настолько изменчивы и многообразны, что для изучения современного климата во всех его особенностях необходимо наблюдать их в течение длительного, многолетнего периода.
     Для получения выводов из очень большого количества наблюдений необходимо подвергать результаты наблюдений статистическому  анализу; поэтому климатические характеристики являются статистическими выводами из многолетних рядов наблюдений. Такие характеристики могут представлять собой многолетние средние значения различных метеорологических величин, средние из ежегодных отклонений от этих многолетних средних значений, крайние пределы отдельных значений за многолетний период, повторяемости тех или других величин явлений, средние и крайние сроки наступления определенных явлений и т. д.
     С помощью статистического метода корреляции можно также установить наличие большего или меньшего параллелизма или противоположности (или отсутствие их) в изменениях различных метеорологических величин во времени. Тем самым можно выяснить, есть ли связь между этими величинами, и количественно выразить степень этой связи.
     Для выражения количественных связей между явлениями в метеорологии употребительны также эмпирические формулы, коэффициенты которых подбираются из опыта, т. е. опять-таки из большого числа сравнительных наблюдений.
     Статистика, таким образом, помогает яснее представить  факты и лучше обнаружить связи между ними. Но статистика не объясняет фактов и связей. А именно их объяснение открывает наиболее надежный путь к предвидению (прогнозу) дальнейшего развития процессов и к сознательному воздействию на них.
       Поскольку в метеорологии рассматриваются физические явления, их объяснение может быть дано только на основании законов физики. Наиболее совершенный путь для этого - физико-математический анализ. В XX столетии достигнуты большие успехи в его применении к задачам метеорологии. На основе общих законов физики составляются дифференциальные уравнения, описывающие атмосферные процессы. Подставляя в эти уравнения исходные данные, полученные из наблюдений, и решая уравнения, можно находить количественные закономерности атмосферных процессов и даже прогнозировать их дальнейшее течение. В одних разделах метеорологии этот метод применяется широко, в других - еще недостаточно. 

    Применение карт
       Основные атмосферные процессы  развертываются на больших пространствах,  а их следствия, в виде определенных условий погоды и климата, обнаруживаются в таком же крупном масштабе. Поэтому существенное значение в метеорологии и климатологии имеет сопоставление наблюдений на географических картах. Последующий анализ наблюдений относится уже не к наблюдениям в отдельных пунктах, а к пространственным распределениям наблюденных величин.
     На  карту можно нанести фактические  результаты наблюдений, сделанные в  разных местах в один и тот же момент. Такая карта называется синоптической; она позволяет видеть, как распределялись условия погоды и, следовательно, каковы были свойства атмосферы и характер атмосферных процессов в этот момент над большой территорией. Составляя синоптические карты для последовательных моментов времени, можно прослеживать развитие атмосферных процессов и делать выводы о будущей погоде.
     На  карты можно наносить и результаты статистической обработки многолетних  наблюдений; тогда мы получим климатологические  карты. Можно составить, например, карты  многолетнего среднего распределения  величин температуры или осадков на определенной территории за тот или иной месяц, карты средних дат установления снежного покрова, карты повторяемости гроз, карты наибольших или наименьших температур, наблюдавшихся в данной местности, и пр. Климатологические карты облегчают дальнейший анализ фактов, относящихся к климату, позволяют делать выводы о пространственном распределении особенностей или типов климата и т. д.
    Метеорологические наблюдения
       Метеорологические наблюдения - это измерения и качественные оценки метеорологических элементов. К метеорологическим элементам относятся в первую очередь температура и влажность воздуха, атмосферное давление, ветер, облачность, осадки, туманы, метели, грозы, видимость. Сюда же присоединяются и некоторые величины, непосредственно не отражающие свойств атмосферы или атмосферных процессов, но тесно связанные с ними. Таковы температура почвы или поверхностного слоя воды, испарение, высота и состояние снежного покрова, продолжительность солнечного сияния и т. п. В меньшем числе мест производятся еще наблюдения над солнечным и земным излучением и над атмосферным электричеством.
     Метеорологические наблюдения над состоянием атмосферы  вне приземного слоя, до высот около 40 км, носят название аэрологических наблюдений. От них отличаются по методике наблюдения над состоянием высших слоев атмосферы, которым можно дать название аэрономических наблюдений.
     Наиболее  полные и точные наблюдения производятся в метеорологических и аэрологических обсерваториях, имеющихся во всех странах мира. Число таких обсерваторий, однако, невелико. Кроме того, даже самые точные наблюдения в немногочисленных пунктах не могут дать исчерпывающего представления обо всей жизни атмосферы, поскольку атмосферные процессы протекают в разной географической обстановке по-разному. Поэтому, кроме метеорологических обсерваторий, наблюдения над основными метеорологическими элементами ведутся еще на многих тысячах метеорологических станций и многих сотнях аэрологических станций по всему Земному шару. 

 

    Метеорологическая сеть
     Для изучения географического распределения метеорологических элементов и сравнения состояния атмосферы (погоды и климата) в различных местах Земли необходимо, чтобы метеорологические станции в каждой стране и во всех странах мира вели наблюдения по возможности однотипными приборами, по единой методике, в определенные часы суток. Иными словами, станции в каждой стране и в мировом масштабе должны составлять единое целое - сеть метеорологических станций, метеорологическую сеть. В каждой стране, в том числе и в России, существует основная государственная сеть метеорологических станций, отвечающая указанному выше требованию - единообразной и согласованной работы. Помимо нее, существуют и метеорологические станции специального назначения, связанные с различными потребностями науки и народного хозяйства (например, станции на курортах, в колхозах, на транспорте и т. п.).
     Метеорологические станции общегосударственной сети устанавливаются по возможности равномерно в местах, характерных для данного района. Нужно стремиться к тому, чтобы показания станции были репрезентативными, т. е. характерными не только для ее ближайших окрестностей, но и для возможно большего окружающего района. Метеорологические станции специального назначения размещают исходя из производственных задач. 

    Длительность и непрерывность наблюдений
     Важнейшие условия сетевых метеорологических  наблюдений, помимо синхронности, - их длительность и непрерывность. Отдельные годы сильно отличаются друг от друга по режиму атмосферных процессов. Этим определяется необходимость при изучении климата иметь многолетние ряды систематических наблюдений. Для изучения изменений климата метеорологические наблюдения должны производиться вообще неограниченно долго. Важно также, чтобы станции как можно дольше не меняли своего местоположения: перенос станции в другое место обрывает многолетний ряд наблюдений или, по крайней мере, нарушает его однородность. Вредно сказывается на однородности рядов наблюдений застройка местности.
     Для целей предсказания погоды также  необходимо вести метеорологические наблюдения постоянно и непрерывно: каждый день в атмосфере наблюдаются все новые бесконечно разнообразные условия, а при прогнозе (предсказании) погоды на будущее приходится исходить из фактических условий в настоящем и прошлом.
    Развитие метеорологической сети
     Государственные сети метеорологических станций  возникли в XIX веке; до этого наблюдения производились в отдельных немногочисленных пунктах. В XX веке густота метеорологических сетей сильно выросла, причем наблюдениями были охвачены и большие области в тропиках, в глубине Азии и Африки, в Арктике и Антарктике, ранее совершенно недоступные. Сейчас на Земном шаре имеются многие тысячи метеорологических станций. Только в Советском Союзе около 4000 станций основного типа, с полной программой наблюдений, и еще несколько тысяч метеорологических постов для наблюдений над осадками и снежным покровом. Наблюдения производятся и на тысячах торговых судов. Для регулярных наблюдений в океанах применяются специальные корабли погоды (метеорологические суда), длительно находящиеся в определенных районах океана.
     Но  все же густота метеорологической  сети еще недостаточна в Арктике, Антарктике, на океанах и в ряде областей всех материков, кроме Европы.
     Поскольку метеорологические наблюдения нужны  для ежедневного прогноза погоды, большое значение для развития метеорологической сети в наше время имеет радиосвязь, позволяющая срочно передавать результаты наблюдений из отдаленных районов.
     В настоящее время существуют и  автоматические станции, длительное время  работающие без вмешательства человека. Их устанавливают в труднодоступных или неудобных для жизни районах, например на льдах Арктики; наблюдения их автоматически передаются по радио. В близком будущем автоматические и полуавтоматические метеорологические станции должны получить широкое применение.
     Сеть  аэрологических станций возникла позднее, лишь в XX веке, и густота ее еще невелика в сравнении с сетью обычных метеорологических станций. Общее число станций с наблюдениями над давлением, температурой и влажностью в высоких слоях с помощью радиозондов составляет на Земном шаре около 1000, из них в СССР свыше 200. Значительно больше станций для наблюдений над ветром на высотах. Производятся также многочисленные наблюдения с самолетов. 

    Программа наблюдений на метеорологических станциях
     На  наземных метеорологических станциях во всем мире производятся одновременные (синхронные) наблюдения через каждые три часа по единому - гринвичскому - времени (времени нулевого пояса). Результаты наблюдений за эти сроки немедленно передаются по телефону, телеграфу или по радио в органы службы погоды. Там по ним составляются синоптические карты и другие материалы, служащие для предсказания погоды.
     На  метеорологических станциях основного  типа регистрируются следующие метеорологические элементы:
    Температура воздуха на высоте 2 м над земной поверхностью.
    Атмосферное давление.
    Влажность воздуха - упругость водяного пара в воздухе и относительная влажность.
    Ветер - горизонтальное движение воздуха на высоте 10- 12 м над земной поверхностью. Измеряется его скорость и определяется направление, откуда он дует.
    Облачность - степень покрытия неба облаками, типы облаков по международной классификации, высота нижней границы облаков, ближайших к земной поверхности, скорость и направление движения облаков.
    Количество осадков, выпавших из облаков, их типы (дождь, морось, снег и пр.).
    Наличие и интенсивность различных осадков, образующихся на земной поверхности и на предметах (росы, инея, гололеда и пр.), а также тумана.
    Горизонтальная видимость - расстояние, на котором, вследствие мутности атмосферы, перестают различаться очертания предметов.
    Продолжительность солнечного сияния.
    Температура на поверхности почвы и на нескольких глубинах в почве.
    Состояние поверхности почвы.
    Высота и плотность снежного покрова.
    На некоторых станциях - испарение воды с водных поверхностей или с почвы.
    Регистрируются также метели, шквалы, смерчи, мгла, пыльные бури, грозы, тихие электрические разряды, полярные сияния и некоторые оптические явления в атмосфере (радуга, круги и венцы вокруг дисков светил, миражи).
     На  береговых метеорологических станциях производятся также наблюдения над  температурой воды и волнением водной поверхности. Программа наблюдений на судах отличается в деталях от наблюдений на сухопутных станциях. На большом числе дополнительных станций (постов) производятся наблюдения только над осадками и снежным покровом, так как для лучшего выяснения распределения этих элементов нужна более густая сеть наблюдений. В программу работы станций, имеющих определенный производственный профиль, например сельскохозяйственных, транспортных, авиационных, включаются особые дополнительные наблюдения.
     Не  все метеорологические элементы наблюдаются в каждый срок наблюдений. Например, количество осадков измеряется четыре раза в сутки, высота снежного покрова - один раз в сутки, плотность снега - один раз в пять дней и т. д.
     В программы наблюдений обсерваторий и отдельных станций входят еще  актинометрические наблюдения над солнечной радиацией, земным излучением, отражательными свойствами (альбедо) поверхности земли и воды; уточненные наблюдения над температурой и влажностью воздуха на разных высотах в приземном слое воздуха (градиентные наблюдения); измерения содержания в воздухе пыли, химических примесей, радиоактивных продуктов и пр.; атмосферно-электрические наблюдения над ионизацией воздуха, т. е. над содержанием в нем электрически заряженных частиц, и над изменениями электрического поля атмосферы.  

 

    Метеорологические приборы
     Наблюдения  на метеорологических станциях в  основном имеют характер измерений и ведутся с помощью специальных измерительных приборов; лишь немногие метеорологические элементы количественно оцениваются без приборов (степень облачности, дальность видимости и некоторые другие). Качественные оценки, например определение характера облаков и осадков, производятся без приборов.
     Для сетевых приборов необходима однотипность, облегчающая работу сети и обеспечивающая сравнимость наблюдений.
     Метеорологические приборы устанавливаются на площадке станции под открытым небом. Только приборы для измерения атмосферного давления (барометры) устанавливаются в закрытом помещении станции, так как разница между давлением воздуха под открытым небом и внутри помещения ничтожно мала (практически отсутствует).
     Приборы для определения температуры  и влажности воздуха защищают от действия солнечной радиации, от осадков и порывов ветра, и для этого их помещают в будках особой конструкции. Отсчеты по приборам делаются наблюдателем в установленные сроки наблюдений. На станциях устанавливаются также самопишущие приборы, дающие непрерывную автоматическую регистрацию важнейших метеорологических элементов (особенно температуры и влажности воздуха, атмосферного давления и ветра). Самопишущие приборы нередко конструируют так, что их приемные части, помещенные на площадке или на крыше здания, имеют электрическую передачу к пишущим частям, установленным внутри здания.
     Принципы  ряда метеорологических приборов были предложены еще в XVII-XIX веках. В настоящее время в метеорологическом приборостроении наблюдается быстрый прогресс. Создаются новые конструкции приборов с использованием возможностей современной техники: термо- и фотоэлементов, полупроводников, радиосвязи и радиолокации, различных химических реакций и т. п. Особенно нужно отметить применение в последние годы в метеорологических целях радиолокации. На экране радиолокатора (радара) можно обнаружить скопления облаков, области осадков, грозы и даже большие атмосферные вихри (тропические циклоны) в значительном отдалении от наблюдателя и прослеживать их эволюцию и перемещение.
     Как упоминалось выше, достигнуты большие  успехи в конструировании автоматических станций, передающих свои наблюдения в течение более или менее длительного времени без вмешательства человека. 

    Методы аэрологических наблюдений
     Наиболее  простым видом аэрологических наблюдений является ветровое зондирование, т. е. наблюдения над ветром в свободной атмосфере с помощью шаров-пилотов. Так называются небольшие резиновые шары, наполняемые водородом и выпускаемые в свободный полет. Наблюдая в теодолиты за полетом шара-пилота, можно установить скорость и направление ветра на тех высотах, на которых летит шар. В настоящее время при аэрологических наблюдениях над ветром все шире применяются методы радиообнаружения, т. е. радиопеленгация радиозондов и радиолокация (радиоветровое зондирование), обеспечивающие получение сведений о ветре при наличии облачного покрова. Наблюдения над ветром, помимо их научной роли, имеют непосредственное значение для обслуживания действий авиации. Такое, же значение имеет и описываемое ниже температурное зондирование.
     Температурным зондированием называются регулярные (обычно два раза в сутки) выпуски в высокие слои атмосферы шаров-зондов с резиновыми оболочками достаточно большого размера, к которым прикреплены автоматические приборы для регистрации температуры, давления и влажности воздуха. До тридцатых годов эти приборы - метеорографы - давали только запись наблюдаемых величин на ленте самописца. На той или иной высоте шар, раздуваясь, лопался, а прибор спускался на землю на втором, дополнительном шаре или на парашюте. Однако возвращение прибора в место выпуска зависело при этом от случая, и не могло быть речи о срочном использовании наблюдений.  
С 1930 г. распространился метод радиозондирования (впервые примененный в СССР). Прикрепленный к шару прибор - радиозонд, находясь еще в полете, посылает радиосигналы, по которым можно определить значения метеорологических элементов в высоких слоях.

     Метод радиозондирования создал переворот в методах аэрологических наблюдений и во всей современной метеорологии. Радиозондовые наблюдения можно без всякого промедления использовать для службы погоды, что особенно повышает их ценность. Благодаря радиозондированию несравнимо возросли наши знания о слоях атмосферы до высоты 30-40 км. Однако точность показаний современных радиозондов еще недостаточно велика.
     Радиозондирование вытеснило другие методы температурного зондирования - подъем метеорографов  на змеях, привязных аэростатах, самолетах и пр. Самолет остается, однако, важным средством для специальных сложных наблюдений, требующих участия наблюдателя, например для изучения физического строения облаков, для актинометрических и атмосферно-электрических наблюдений. Для тех же целей применяются аэростаты, а изредка стратостаты с герметически закрытыми гондолами. Последний рекорд высоты подъема на стратостате в США близок к 35 км.
     В последние годы начали практиковать выпуски шаров без людей не только с радиозондами, но и с более сложными автоматическими приборами для разного рода наблюдений. Такие шары большого диаметра с оболочкой из полиэтилена (трансокеанские зонды) достигают со значительным грузом приборов высот порядка 30-40 км. Они могут лететь на определенной заданной высоте (точнее, на заданной изобарической поверхности, т. е. в слое с одним и тем же атмосферным давлением), находясь при этом в воздухе много дней подряд и передавая радиосигналы. Определение траекторий полета таких шаров имеет значение для изучения переноса воздуха в высоких слоях атмосферы, особенно над океанами и в низких широтах, где сеть аэрологических станций недостаточна.
     Для исследования еще более высоких  слоев атмосферы производят выпуски  метеорологических и геофизических ракет с приборами, показания которых передаются по радио. Потолок подъема ракет в настоящее время стал уже неограниченным.
     В 1957-1958 гг. в СССР, а затем в США  удалось запустить, первые спутники Земли с автоматическими приборами в высшие слои атмосферы. Теперь уже большое количество таких спутников вращается вокруг Земли, причем орбиты некоторых из них достигают высот в десятки тысяч километров. С 1960 г. регулярно запускаются так называемые метеорологические спутники, предназначенные для исследования нижележащих слоев атмосферы. Они фотографируют и передают телевизионным путем распределение облачности по Земному шару, а также измеряют поступающую от земной поверхности радиацию.
     Кроме того, важным методом исследования высших слоев являются наблюдения над  распространением радиоволн. 

    Метеорологическая служба
     Во  всех странах существуют специальные  государственные организации, так  называемые метеорологические службы, в состав которых входят сети станций и научные метеорологические учреждения. Задачей метеорологической службы является научное исследование атмосферы и практическое обслуживание народного хозяйства информацией о погоде и климате и прогнозами погоды. В Советском Союзе в состав Гидрометеорологической службы СССР вместе с метеорологическими входят и гидрологические станции и учреждения. Руководство этой службой осуществляется Главным управлением гидрометеорологической службы при Совете Министров СССР и подведомственными ему республиканскими и областными управлениями. Кроме многотысячной сети станций, она включает ряд научных институтов, центральных и периферийных, ряд областных гидрометеорологических обсерваторий и многочисленные органы службы погоды по всей стране (бюро прогнозов, авиаметеорологические станции и др.).
     Несколько крупных центральных институтов Гидрометеорологической службы работают в области метеорологии и климатологии. Это Главная геофизическая обсерватория имени А. И. Воейкова в Ленинграде, основанная в 1849 г., Гидрометцентр СССР в Москве (вначале называвшийся Центральным бюро погоды СССР, а затем, до 1966 г., Центральным институтом прогнозов), основанный в 1930 г., Центральная аэрологическая обсерватория под Москвой, основанная в 1943 г., Институт аэроклиматологии в Москве, основанный в 1943 г. Метеорологические и климатологические исследования ведутся и в некоторых других центральных институтах Гидрометеорологической службы (Институт гидрометеорологического приборостроения, Арктический и Антарктический институт, Институт прикладной геофизики, Государственный океанографический институт), в нескольких гидрометеорологических институтах на периферии (в Киеве, Тбилиси, Алма-Ате, Владивостоке, Ташкенте), в местных гидрометеорологических обсерваториях, а также в университетах и других высших учебных заведениях, в учреждениях Академии наук СССР (например, в Институте физики атмосферы и в Институте географии в Москве) и академий наук союзных республик, воздушного и морского флота, железнодорожного транспорта и др. 

 

    Всемирная метеорологическая организация
     Атмосферные процессы не знают государственных  границ, и метеорологические наблюдения и исследования ведутся во всех странах. Поэтому существует настоятельная необходимость в единообразии методики наблюдений и их обработки, в обмене информацией, в унификации форм оперативного обслуживания метеорологической информацией и прогнозами, а стало быть, в согласовании работы метеорологических служб всего мира. Это является задачей Всемирной метеорологической организации (ВМО).
     Международное сотрудничество в области метеорологии началось во второй половине XIX века. В 1873 г. состоялся первый международный метеорологический конгресс, заложивший основы Международной метеорологической организации с регулярно созывавшимися конференциями директоров метеорологических служб, с Международным метеорологическим комитетом, работавшим в перерывах между конференциями, и с рядом международных комиссий по разным вопросам метеорологии. Особенных успехов Международная метеорологическая организация достигла за период между двумя мировыми войнами. После второй мировой войны она была восстановлена на новой основе, как Всемирная метеорологическая организация при Организации Объединенных Наций. Каждые 5 лет собираются всемирные конгрессы ВМО, избирающие Исполнительный комитет и президента организации; регулярно работает ряд технических комиссий и рабочих групп. Секретариат ВМО находится в Женеве. Гидрометеорологическая служба СССР входит в эту организацию.
     Важнейшей современной задачей ВМО является организация Всемирной службы погоды, т. е. тесного сотрудничества всех стран  мира в постановке метеорологических  наблюдений в планетарном масштабе, в распространении информации, в разработке и распространении прогнозов погоды по единой согласованной схеме. Эту Всемирную службу погоды должны возглавлять три мировых метеорологических центра - в Москве, Вашингтоне и Мельбурне - и 25 региональных центров. Гидрометеорологический центр СССР является одним из трех мировых центров.
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.