На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Контрольная Обзор таблицы производных элементарных функций. Понятие промежуточного аргумента. Правила дифференцирования сложных функций. Способ изображения траектории точки в виде изменения ее проекций по осям. Дифференцирование параметрически заданной функции.

Информация:

Тип работы: Контрольная. Предмет: Математика. Добавлен: 11.08.2009. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


Контрольная работа
Дисциплина: Высшая математика
Тема: Таблица производных. Дифференцирование сложных функций
1. Таблица производных
Как известно, большинство функций можно представить в виде какой-то комбинации элементарных функций. Зная, как дифференцируются элементарные функции, можно продифференцировать и их различные комбинации. Поэтому рассмотрим таблицу производных элементарных функций.
1. .
Найдем производную, когда .
Зададим приращение аргументу , что даст . Так как
, а , то
Отсюда и ,
то есть . Если , результат тот же.
2. .
Зададим приращение аргументу , что даст . Так как , а , то
.
Отсюда и , то есть .
3. .
Зададим приращение аргументу , что даст . Так как , а , то
.
Отсюда и , то есть .
4. .
По определению . Будем дифференцировать как частное:
, то есть .
5. .
По определению . Будем дифференцировать как частное:
, то есть .
6. .
Зададим приращение аргументу , что даст . Так как , а , то
.
Отсюда и
,
то есть . Здесь была использована формула для второго замечательного предела.
7. .
Для вычисления производной воспользуемся предыдущей формулой, в которой положим : . Значит, .
8. .
Зададим приращение аргументу , что даст . Так как , а , то . Отсюда
и , то есть .
Здесь была использована формула для одного из следствий из второго замечательного предела.
9. .
Для вычисления производной воспользуемся предыдущей формулой, в которой положим : . Значит, .
Прежде чем перейти к вычислению производных от обратных тригонометрических функций, рассмотрим вопрос о дифференцировании обратных функций вообще. Как было сказано в п. 8.2, для каждого взаимно однозначного отображения существует обратное отображение, то есть если , то .
Теорема. Если для некоторой функции существует обратная ей , которая в точке имеет производную не равную нулю, то в точке функция имеет производную равную , то есть .
Доказательство. Рассмотрим отношение приращения функции к приращению аргумента: . Так как функция имеет производную, то согласно теореме 11.2.2 она непрерывна, то есть , откуда . Значит, .
Воспользуемся данной теоремой для вычисления производных обратных тригонометрических функций.
10. .
В данном случае обратной функцией будет . Для нее . Отсюда
,
то есть .
11. .
Так как
, то . .
В данном случае обратной функцией будет . Для нее
.
Отсюда , то есть .
13. .
Так как
, то .
2. Производная сложной функции
Пусть дана функция и при этом . Тогда исходную функцию можно представить в виде . Функции такого типа называются сложными. Например, .
В выражении аргумент называется промежуточным аргументом. Установим правило дифференцирования сложных функций, так как они охватывают практически все виды существующих функций.
Теорема. Пусть функция имеет производную в точке , а функция имеет производную в соответствующей точке . Тогда сложная функция в точке также будет иметь производную равную производной функции по промежуточному аргументу умноженной на производную промежуточного аргумента по , то есть .
Для доказательства дадим приращение аргументу , то есть от перейдем к . Это вызовет приращение промежуточного аргумента , который от перейдет к . Но это, в свою очередь, приведет к изменению , который от перейдет к . Так как согласно условию теоремы функции и имеют производные, то в соответствии с теоремой о связи дифференцируемости и непрерывности функции (теорема 11.2.2) они непрерывны. Значит, если , то и , что, в свою очередь, вызовет стремление к нулю.
Составим . Отсюда,
и, следовательно, .
Если функция имеет не один, а два промежуточных аргумента, то есть ее можно представить в виде , где , а , или , то, соответственно, и так далее.
3. Диф и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.