На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


лабораторная работа Теория вероятностей: биноминальный закон, закон Пуассона. Задачи. Независимо друг от друга 10 чел. Садятся в поезд, содержащий 15 вагонов. Вероятность того, что все они поедут в разных вагонах?

Информация:

Тип работы: лабораторная работа. Предмет: Математика. Добавлен: 07.10.2002. Сдан: 2002. Уникальность по antiplagiat.ru: --.

Описание (план):


Независимо друг от друга 10 чел. Садятся в поезд, содержащий 15 вагонов.
Вероятность того, что все они поедут в разных вагонах?
Р= число близких иходов = 15….14…….- 6 = 15 ! -2
Число элемент. исходов 15*15*15…15 5 ! 1,88 * 1е
10 раз 50
15 _____________________________________
2. В электрической цепи последовательно включены 3 элемента, работающие
независимо друг от друга. Их вер-ть отказов равны 1 49 1 .
Найти вероятность того, что тока не будет? 50 ; 50 ; 4
-- - -
А -ток есть
Аi - i-й прибор не исправен
Р (А) = 49 Р (А2)= 1 Р ( А3) = 3
50 ; 50 ; 4
_
Р (А)=1-Р(А) = 1-Р (А1 А2 А3 ) = 1-Р (А1) Р (А2)* Р (А3) = 1- 49 * 1- 3 = 9,753
50 50 4 10,000
____________________________________________________________________________________________
3. Вер-ть попадания хотя бы раз в мишень при 12-ти выстрелах равно 41 .
Найдите вер-ть попадания при одном выстреле? 50
Аi - успешный i - выстрел
_________
Р = 41 = 1-Р ( А1 …..А12) - не попали ни в одном случае из 12-и выстрелов =
50
__ __ _ 12 12
= 1 - Р (А1) …..Р (А12) = 1 - Р (А1) ; 41 = 1-Р (А1)
50
Найти Р (А1)
_ 12
Р (А1) = 1- 41 = 9
50 50
_ 12__
Р (А1) = 9
50
_ 12__
Р (А1) = 1-Р (А1) = 1 - 9 0,133
50 ___________________________________________
Имеются 28 билетов, на каждом из которых написано условие нескольких
задач. В 13 билетах задачи по статистике, а в остальных 15 - задачи по теории
вероятности. 3 студента выбирают на удачу по одному билету. Найти вероятность
того, что хотя бы одному из студентов не достанется задача по теории вероятности.
Аi -студенту достанется задача по теории вероятности
А - всем достанется задача по теор. вероят.
А = А1 А2 А3
А - хотя бы одному не достанется задача по теор.вероят.
_
Р (А) = 1 - Р(А) = 1- Р (А1 А2 А3) = 1 - Р *(А3) * Р (А1 А2) = 1-Р *(А3) * Р *
А1А2 А1А2 А1
*(А2)*Р (А1)= 1 - 15 * 14 * 13 = 0,265
28 27 26
В ящике содержится 6 деталей, изготовленных на 1-м заводе, 2 детали на 2-м заводе
и 4 детали на 3-м заводе. Вероятность брака на заводах равна 19 , 19 и 59
20 50 100
Найти вероятность того, что наудачу извлеченная деталь будет качественная.
Н1 - деталь с 1-го завода
Н2 - деталь со 2-го завода
Н3 - деталь с 3-го завода.
Р(Н1) = 6 = 1 ; Р(Н2) = 2 = 1 ; Р(Н3) = 4 = 1
12 2 12 6 12 3
А - извлеченная деталь качественная
_ _ _ _
Р (А) = Р *(А) * Р (Н1) + Р *(А) * Р (Н2) + Р *(А)*Р (Н3) =19 * 1 + 19 * 1 + 59 *1=147=
Н1 _ Н2 Н3 20 2 50 6 100 3 200
Р (А) = 1 - Р (А) = 53/200
__________________________________________________________________________________________
Независимые вероятные величины Х,У представляют только целые значения
Х: от 1 до 16 с вер-ю 1
16
У: от 1 до 23 с вер-ю 1
23
Р ( Х+У = 32)
Х У Р (Х=9; Х =23) = P (Х=9) * Р (У = 23) = 1 * 1
9 23 16 23
10 22
P ( X+y=32 )=P ( X=8, y=23 ) + P ( X=10; y=12 )+…+P ( y=16,X=16 )=
16 16 = 8* 1 * 1 = 1
23 46
_________________________________________________________________________________________
Независимые случайные величины Х , У принимает только целые значения.
Х: от 1 до 14 с вероятностью 1
14
У: от 1 до 7 с вероятностью 1
7
Найти вероятность того, что Р (Х У)
Если У = 7, то 1 Х 6 1 * 6
14
Если У = 6 то 1 Х 5 1 * 5
7 14
Если У = 5 то 1 Х 4 1 * 4
14
Если У = 4 то 1 Х 3 1 * 3
14
Если У = 3 то 1 Х 2 1 * 2
14
Если У = 2 то 1 = Х 1 * 1
7 14
Р (ХУ) = 1 * 6 + 1 * 5 + 1 * 1 = 1+2+3+4+5+6 = 21 = 3
7 14 7 14 7 4 7 * 14 714 14
_________________________________________________________________________________________
Независимые величины Х1……Х7 принимают только целые значения от
0 до 10 с вероятностью 1
11
Найти вероятность того , что Р(Х1…….Х7) = 0
Р (Х1……Х7 =0) = 1-Р (Х1….Х7 0) = 1- Р( Х10….Х7 )=1-Р( Х10 )*Р (Х20)
7
*….* Р(Х70) = 1 - 10 * 10 = 1 - 10
11……. 11 11
7 раз
Независимые случайные величины Х, У, Z принимают целые значения
Х: от 1 до 13 с вероятн-ю 1
13
У: от 1 до 12 _____/_____ 1
12
Z от 1 до 9 _____/_____ 1
9
Вероятность того, что Х;У;Z. примут разные значения?
Пусть “Z” приняло какое-то значение “а”. Р (Уа) = 11
12
Пусть при этом У= в
Р (Z a; Z в) = 11 ; Р = 11 * 11
13 12 13.
_______________________________________________________________________________________
10.
Х
1
4
7
Р
0,1
0,4
0,5
м = М (Х) - ? М (Х) = 0,1+1,6+3,5 = 5,2
Р ( Х м) - ? Р ( Х 5,2) = Р(Х=1) + Р(Х=4) = 0,5
___________________________________________________________________________________________
11.
Х
2
3
5
Р
0,2
0,3
0,5
2
Х
4
9
25
Р
0,2
0,3
0,5
Д (Х) - ?
М(Х) = 0,4+0,9+2,5=3,8
2
М (Х ) = 0,8+2,7+12,5 = 16
2 2 2
Д (Х) = М (Х ) - М (Х) = 16 - 3,8 = 1,56
______________________________________________________________________________________________________________
12. Независимые величины Х1,…….,Х9 принимают целое значение - 8, - 7,…..,5,6
с вероятностью 1
15 9
Найти М (Х1,Х2,…..,Х9) * М (Х2,….,Х9) = М (Х1) * М(Х2)*….* М(Х9) =М (Х9)
М (Х1) = 8 * 1 - 7 * 1 * 6 * 1 - … + 5 * 1 + 6 * 1 = 1 (-8-7-5….+5+6) = -1
15 15 15 15 15 15
9 9
= М (Х1) = ( -1) = -1
13.
Х
8
10
12
14
16
Р
0,25
0,2
0,2
0,2
0,25
м= М (Х)-? М (Х) = 2 + 2 + 1,2 + 2,8 + 4 = 12
д(Х) -? 2 2
Р ( (Х-м) ) Д (Х) = М (Х - М (Х) ) = М (Х-12)
Х-12
-4
-2
0
2
4
Р
0,25
0,2
0,1
0,2
0,25
2
(Х-12)
1
4
0
Р
0,5
0,4
0,1
2
М (Х-Р) = 8+1,6
_____
(Х) = (Х) 3,1
Р ( Х -12 3,1 ) = Р (-3,1Х -12 3,1) = Р (8,9Х15,1) =
= Р (Х=10) + Р (Х=12) + Р (Х=14) = 0,5
___________________________________________________________________________________________________________

14. Х, У - неизвестные случайные величины
М (Х) = 3 8 2 2 2 2 2
М (У) =2 Д(ХУ) = М( ХУ ) - М (ХУ) = М (Х ) * М (У ) - [ М (Х)*М (Х)] =
Д(Х) = 4 2 2 2 2
Д(У) = 8 Д (Х)=М(Х ) - М (Х) = М (Х ) = Д (Х) + М (Х) = 4 + 9 = 13
Д (Х У) 2 2
М (У ) = Д (Х) + М (У) = 8 + 4 = 12
2
= 12*13 - (2 * 3) = 156 - 36 = 120
__________________________________________________________________________
15. Х, У - независимые неизвестные величины. Принимают значение 0 и 1.
Р (Х=0) = 0,3 2 2 2 2 2

Р (У=0) = 0,6 М(Х+У) + М (Х + 2ху +у ) = М (Х ) +2М (Х) * М (У) + М (У ) =

2

М (Х+У)

2

Х , Х
0
1
Р
0,3
0,7

2

Х , Х
0
1
Р
0,6
0,4

2

М (Х) = 0,7 = М (Х )

2

М (У) = 0,4 = М ( У )

= 0,7 + 2 * 0,7 * 0,4 + 0,4 = 1,66

16. Х, У независимые неизвестные величины Принимают значение 0 и 1.

(задание как в 15).

Х
0
1
Р
0,3
0,7
У
0
1
Р
0,5
0,5

х - у

М (3 ) - ?

х-у х -у х -у

М (3 ) = М (3 * 3 ) =М (3 ) * М (3 ) = 2,4 * 2 = 1,6

3

х

3
1
3
Р
0,3
0,7

3
1

1

3
Р
0,5
0,5

Х и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.