На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Контрольная Определение вероятности случайного события; вероятности выиграшных лотерейных билетов; пересечения двух независимых событий; непоражения цели при одном выстреле. Расчет математического ожидания, дисперсии, функции распределения случайной величины.

Информация:

Тип работы: Контрольная. Предмет: Математика. Добавлен: 29.06.2010. Сдан: 2010. Уникальность по antiplagiat.ru: --.

Описание (план):


Министерство высшего образования Украины
Национальный Технический Университет Украины
“Киевский политехнический институт”
Кафедра автоматизированных систем обработки информации и управления
К о н т р о л ь н а я р а б о т а
по дисциплине :
“ Теория вероятностей и математическая статистика”
Вариант № 24

Выполнил студент гр. ЗІС - 91

ІІI курса факультета ФИВТ

Луцько Виктор Степанович

2009г.

Задача 1

Бросаются две игральные кости. Определить вероятность того, что:

а) сумма числа очков не превосходит N;

б) произведение числа очков не превосходит N;

в) произведение числа очков делится на N.

Исходные данные: N=18.

Решение задачи:

Вероятностью случайного события А называется отношение числа равновозможных элементарных событий, благоприятствующих этому событию, к числу всех равновозможных элементарных событий пространства Е, определяемого данным испытанием.
Р(А) =
m

n

где: n - число всех равновозможных элементарных событий, вытекающих из условий данного испытания;
m - число равновозможных событий, которые благоприятствуют событию А.
а) при сумме числа очков (N = 18), не превосходящих N:
n = 36;m = 36
Р(А) =
36
=
1 ;
36
б) при произведении числа очков, не превосходящих N:
n = 28;m = 36
Р(А) =
28
=
7
0,778 ;
36
9
в) при произведении числа очков, делящихся на N:
n = 3;m = 36
Р(А) =
3
=
1
0,083 .
36
12
Ответы:
а) Р(А) = 1 ;
б) Р(А) = 7/9 0,778 ;
в) Р(А) = 1/12 0,083.
Задача 2
Имеются изделия четырех сортов, причем число изделий i-го сорта равно =1, 2, 3, 4. Для контроля наудачу берутся т изделий. Определить вероятность того, что среди них т1 первосортных, т2, т3 и т4 второго, третьего и четвертого сорта соответственно .
Исходные данные: n1 = 3; n2 = 1; n3 = 6; n4 = 2;m1 = 2; m2 = 1; m3 = 3; m4 = 1.
Решение задачи.
Определяем количество способов нужной комбинации:
С = Сn1 m1 x Сn2 m2 x Сn3 m3 x Сn4 m4 = С3 2 x С1 1 x С6 3 x С2 1 ;
Определяем количество всех возможных способов:
С = Сn1+n2+n3+n4 m1+m2+m3+m4 = С12 7 ;
3) Определяем вероятность Р согласно условия задачи:
Р =
С3 2 x С1 1 x С6 3 x С2 1
=
3 х 1 х
4 х 5 х 6
х 2
=
2 х 3
С12 7
8 х 9 х 10 х 11 х 12
2 х 3 х 4 х 5
=
3 х 5
=
5
0,15
9 х 11
33
Ответ: Р = 5/33 0,15 .

Задача 3
Среди п лотерейных билетов k выигрышных. Наудачу взяли т билетов. Определить вероятность того, что среди них
выигрышных.
Исходные данные: n = 8; l = 3; m = 5; k = 4.
Решение задачи.
Общее число случаев, очевидно, равно Сn m , число благоприятных случаев Сk l x Сn-k m-l , откуда:
Р(А) =
Сk l x Сn-k m-l
=
С4 3 x С8-4 5-3
=
3
0, 4286 .
Сn m
С8 5
7

Ответ: Р(А) = 3/7 0, 4286 .

Задача 7

В круге радиуса R наудачу появляется точка. Определить вероятность того, что она попадает в одну из двух непересекающихся фигур, площади которых равны S1 и S2. Исходные данные:R =14; S1 = 2,6; S2 = 5,6.

Решение задачи


P(A) =
S
.

R2

P(A1) =
S1
=
2,6
0,0042246 ;
R2

3,14 x 142

P(A2) =
S2
=
5,6
0,0090991 ;
R2

3,14 x 142

P(A) =
S1+ S2
=
2,6 + 5,6
=
8,2
0,013324 .
R2

3,14 x 142

615,44

Ответ: Р(А) 0,013324 .

Задача 8

В двух партиях k1 и k2 % доброкачественных изделий соответственно. Наудачу выбирают по одному изделию из каждой партии. Какова вероятность обнаружить среди них:

а) хотя бы одно бракованное;

б) два бракованных;

в) одно доброкачественное и одно бракованное?

Исходные данные: k1 = 81; k2 = 37.

Решение задачи

События А и В называются независимыми, если выполняется соотношение:

Р(А/В) = Р(А) / Р(В) .

Для любых событий А и В имеет место формула:

Р(А+В) = Р(А) + Р(В) - Р(АВ) .

Обозначения:

Событие А - выбрали бракованное изделие из 1-й партии (1 - k1) ;

Событие B - выбрали бракованное изделие из 2-й партии (1 - k2) .

События А и В - независимые.

а) Р(А+В) = Р(А) + Р(В) - Р(АВ) = (1 - k1) + (1 - k2) - (1 - k1)(1 - k2) =

= 0,19 + 0,63 - 0,19 х 0,63 0,82 - 0,12 0,70 .

б) Вероятность пересечения двух независимых событий равна произведению вероятностей этих событий:

Р(АВ) = Р(А) х Р(В) = (1 - k1)(1 - k2) = 0,19 х 0,63 0,12 .

в) Р = Р(А) х Р(В) + Р(В) х Р(А) = (1 - k1)k2 + (1 - k2)k1 =

= 0,19 х 0,37 + 0,63 x 0,81 0,07 + 0,51 0,58 .

Ответы:

а) 0,70;

б) 0,12;

в) 0,58.

Задача 9

Вероятность того, что цель поражена при одном выстреле первым стрелком р1 вторым -- р2 . Первый сделал n1, второй -- n2 выстрелов. Определить вероятность того, что цель не поражена.

Исходные данные: p1 = 0,33; p2 = 0,52; n1 = 3; n2 = 2.

Решение задачи.

Обозначения:

А - вероятность непоражения цели при одном выстреле первым стрелком (1 - р1) ;

В - вероятность непоражения цели при одном выстреле вторым стрелком (1 - р2) ;

Р - цель не поражена в результате общего количества испытаний.

Р = (1 - р1)n1 x (1 - р2)n2 = (1 - 0,33)3 x (1 - 0,52)2 = 0,673 x 0,482 0,30 x 0,23 0,069 0,07 .

Ответ: 0,07 .

Задача 12

Из 1000 ламп ni принадлежат i-й партии, i=1, 2, 3, . В первой партии 6%, во второй 5%, в третьей 4% бракованных ламп. Наудачу выбирается одна лампа. Определить вероятность того, что выбранная лампа -- бракованная.

и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.