На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Курсовик Формулировка теоремы Бернулли, проверка ее с помощью программы. Моделирование случайной величины методом кусочной аппроксимации. График распределения Коши, построение гистограммы и нахождения числовых характеристик, составление статистического ряда.

Информация:

Тип работы: Курсовик. Предмет: Математика. Добавлен: 31.05.2010. Сдан: 2010. Уникальность по antiplagiat.ru: --.

Описание (план):


Московский Государственный Авиационный Институт

( технический университет )

Филиал “Взлёт

Курсовая работа

по дисциплине "Теория вероятности и математическая статистика"

“Теория вероятности”

Выполнил студент группы ДР-2:

Архипов А.В.

Проверил преподаватель:

Егорова Т. П.

г. Ахтубинск 2004 г

Задание 1

Проверка выполнимости теоремы Бернулли на примере надёжности электрической схемы.

Формулировка теоремы Бернулли: “Частота появления события в серии опытов сходится по вероятности к вероятности данного события”.

p1 = 0.9

p2 = 0.8

p3 = 0.9

p4 = 0.8

p5 = 0.9

p6 = 0.9

Проверка теоремы с помощью программы:

Текст программы:

Program bernuli;
Uses CRT;
Var op,i,j,m,n:integer;
a,pp:real;
p:array[1..6] of real;
x:array[1..6] of byte;
Begin
ClrScr;
Randomize;
p[1]:=0.9; p[2]:=0.8; p[3]:=0.9; p[4]:=0.8; p[5]:=0.9; p[6]:=0.9;
for op:=1 to 20 do begin
n:=op*100; m:=0;
write(' n=',n:4);
for i:=1 to n do begin
for j:=1 to 6 do begin
x[j]:=0;
a:=random;
if a<p[j] then x[j]:=1;
end;
if ((((((x[1]=1) and (x[2]=1)) or (x[3]=1)) and (x[4]=1)) or (x[5]=1)) and (x[6]=1)) then m:=m+1
end;
pp:=m/n;
writeln(' M=',m:4,' P*=',pp:3:6);
End;
Readln;
end.
Результаты работы программы:
Опытов: Мсходы: Вер-ть:
n= 100 M= 89 P*=0.89
n= 200 M= 173 P*=0.86
n= 300 M= 263 P*=0.88
n= 400 M= 360 P*=0.90
n= 500 M= 434 P*=0.87
n= 600 M= 530 P*=0.88
n= 700 M= 612 P*=0.87
n= 800 M= 704 P*=0.88
n= 900 M= 784 P*=0.87
n=1000 M= 865 P*=0.86
n=1100 M= 985 P*=0.90
n=1200 M=1062 P*=0.89
n=1300 M=1165 P*=0.90
n=1400 M=1238 P*=0.88
n=1500 M=1330 P*=0.89
n=1600 M=1418 P*=0.89
n=1700 M=1471 P*=0.87
n=1800 M=1581 P*=0.88
n=1900 M=1670 P*=0.88
n=2000 M=1768 P*=0.88
Вер. в опыте: p= 0.88
Проверка вручную:
Первый способ:
Второй способ:
Вывод: Теорема Бернулли верна.
Задание 2

Методом кусочной аппроксимации смоделировать случайную величину, имеющую закон распределения Коши, заполнить массив из 300 точек.
Теория:
Метод кусочной аппроксимации заключается в том, что для формирования одного случайного числа из последовательности с заданным законом распределения необходимо дважды использовать датчик случайных чисел. Процедура получения случайного числа yi сводиться к:
1. Случайный выбор интервала (определение значения aj)
2. Случайный выбор «b» из этого интервала
3. Формирование случайного числа в соответствии с формулой
При выборе интервала на первом шаге процедуры должна учитываться плотность распределения. С этой целью ее кусочно-линейно аппроксимируют отрезками прямых, параллельных оси абсцисс (рис.1.)
Рис.1. Кусочно-линейно аппроксимированный график плотности распределения по закону Коши.
Количество интервалов разбиения области определения случайной величины обычно выбирается достаточно большим (именно поэтому в данной Курсовой работе было использовано разбиение на 400 интервалов).
Решение:
Построим график плотности распределения по закону Коши ():
Рис.2. График распределения Коши.
Необходимо разбить интервал от -20 до 20 на n подинтервалов (в данном случае n=40) и вычислить вероятность попадания на каждый из этих подинтервалов. После этого составить массив [a1,aj], так чтобы a1=0, a , случайно сгенерировать значение числа «b» из промежутка от 0 до 1, найти номер интервала в который она попадет и второй раз используя датчик случайных чисел сгенерировать случайную добавку «b». Для выполнения этих действий составим программу в среде Turbo Pascal 7.1.
Программа позволяющая смоделировать СВ, имеющую закон распределения Коши:
Program tvmslab2;
Uses CRT,GRAPH;
Type mas=array[1..40] of real;
label 10;
const a:mas=(0.0008,0.0009,0.001,0.0011,0.0013,0.0015,0.0017,0.002,0.0024,
0.00287,0.0035,0.0043,0.0056,0.0074,0.01,0.015,0.024,0.045,0.102,0.25,0.25,
0.102, 0.045,0.024,0.015,0.01,0.0074,0.0056,0.0043,0.0035,0.00287,0.0024,0.002
0.0017,0.0015,0.0013,0.0011,0.001,0.0009,0.0008);
Xmax=20; Xmin=-20;
n=300; k=40; xn=70; xm=550; yn=180; ym=140;
Var i,j:integer;
q:boolean;
a1,y,x,e,dh,t,Mmax,hmax,t1,t2,b,Mxx,Dxx,Skx,Qxx,Exx:real;
r,d,x1,x2,y1,y2:integer;
m,xi,pix,hi,h:array[1..300] of real;
o,l:array[1..41] of real;
b1:array[0..300] of real;
st:string;
Begin
clrscr;
randomize;
o[1]:=0;
for i:=1 to 41 do begin
o[i+1]:=o[i]+a[i];
end;
x:=-20;
for i:=1 to 41 do begin
l[i]:=x;
x:=x+1;
end;
writeln(' Массив имеющий закон распределения Коши:')
writeln;
for j:=1 to 300 do begin
a1:=random;
for i:=1 to 41 do begin
if (a1>o[i]) and (a1<o[i+1]) then goto 10;
end;
10: b1[j]:=random+l[i];
write( и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.