На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Курсовик Теорема Бернулли на примере моделирования электросхемы. Моделирование случайной величины, имеющей закон распределения модуля случайной величины, распределенной по нормальному закону. Проверка критерием Х2: имеет ли данный массив закон распределения.

Информация:

Тип работы: Курсовик. Предмет: Математика. Добавлен: 31.05.2010. Сдан: 2010. Уникальность по antiplagiat.ru: --.

Описание (план):


Московский авиационный институт
/государственный университет/
Филиал «Взлет»

Курсовая работа

Теория вероятности и математическая статистика

Содержание

Задание №1: Проверка теоремы Бернулли на примере моделирования электросхемы

Задание №2: Смоделируем случайную величину, имеющую закон распределения модуля случайной величины, распределенной по нормальному закону

Задание №3: Проверка критерием Х2: имеет ли данный массив соответствующий закон распределения

Список используемой литературы

Задание №1: Проверка теоремы Бернулли на примере моделирования электросхемы

Теорема Я. Бернулли: при увеличении количества опытов, частота появлений событий сходится по вероятности к вероятности этого события.

План проверки: Составить электросхему из последовательно и параллельно соединенных 7 элементов, рассчитать надежность схемы, если надежность каждого элемента: 0.6 < pi < 0.9. Расчет надежности схемы провести двумя способами. Составить программу в Turbo Pascal, при помощи которой мы будем проводить опыты, учитывая, что надежность каждого из элементов в пределах от 0.6 до 0.9. Высчитывать частоту безотказной работы схемы. Для этого мы вводим надежность каждого из элементов. Программа будет увеличивать число опытов от 1000 до 20000 через 1000 проверяя сколько из этих опытов окажутся успешными, т.е. схема работает, для этого проверяется условие когда x[i]<P[i] то присваиваем этому элементу логическую 1 т.е. элемент работает, а если условие не выполняется то элемент не работает, всё это проделывается для каждого из 7 элементов для этого данное условие задаётся при помощи цикла. Далее получаем количество успешных опытов и делим на количество проведённых получая при этом частоту безотказной работы данной схемы.

Схема:

Электрическая цепь, используемая для проверки теоремы Бернулли

Расчет:

Чтобы доказать выполнимость теоремы Бернулли, необходимо чтобы значение частоты появления события в серии опытов в математическом моделировании равнялось значению вероятности работы цепи при теоретическом расчёте этой вероятности.

Математическое моделирование с помощью Turbo Pascal.

Program TVMS_kursov_1;

Uses CRT;

Var i,b,k,d,op,n:Integer;

ch:Real;

P,x:Array[1..10] of Real;

a:Array[1..30] of Integer;

Begin

ClrScr;

Randomize;

For i:=1 to 7 do

begin

Write(' Введите надёжности элементов P[',i,']=');

ReadLn(P[i]);

End;

WriteLn;

WriteLn('Число опытов ','Число благоприятных исходов ','Частота');

For op:=1 to 20 do

begin

n:=op*1000;

d:=0;

For k:=1 to n do

begin

For i:=1 to 7 do

begin

x[i]:=Random;

If x[i]<P[i] then a[i]:=1 else a[i]:=0;

End;

b:=((a[3]+a[4]+a[5]*a[6]*a[7])*a[1]*a[2]);

if b>=1 then d:=d+1;

End;

ch:=d/n;

WriteLn;

Write(' ':3,n:5,' ':20,d:5,' ':15,ch:5:4);

End;

WriteLn;

ReadLn;

End.

Результат работы программы.

Введите надёжности элементов P[1]=0.7

Введите надёжности элементов P[2]=0.9

Введите надёжности элементов P[3]=0.8

Введите надёжности элементов P[4]=0.6

Введите надёжности элементов P[5]=0.9

Введите надёжности элементов P[6]=0.7

Введите надёжности элементов P[7]=0.8

Таблица

Числоопытов
Числоблагоприятныхисходов
Частота

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

15000

16000

17000

18000

19000

20000

618

1225

1808

2478

3022

3592

4182

4847

5432

6070

6643

7252

7876

8574

9030

9769

10281

11006

11520

11997

0.6180

0.6125

0.6027

0.6195

0.6044

0.5987

0.5974

0.6059

0.6036

0.6070

0.6039

0.6043

0.6058

0.6124

0.6020

0.6106

0.6048

0.6114

0.6063

0.5998

Теоретический расчёт вероятности работы цепи:

I способ:

II способ:

Из математического моделирования с помощью Turbo Pascal видно, что частота появления события в серии опытов сходится по вероятности к рассчитанной теоретически вероятности данного события .

Распределение модуля случайной величины, распределенной по нормальному закону

Пусть СВ Y подчиняется закону нормального распределения. Пусть по тем или иным причинам представляет интерес величина отклонения Y от нуля независимо от знака этого отклонения, т. е. СВ

X=|Y|

которая образует распределение модуля СВ, подчиненной нормальному закону.

Математическое выражение. Распределение модуля СВ определяется теми же двумя параметрами, которые характеризуют исходное нормальное распределение.

Плотность вероятности равна

где x0, ун -- математическое ожидание и среднее квадратическое отклонение исходного нормального распределения;

ц(t) -- функция, определяемая равенством (5.12).

Функция распределения равна

где Ф0(t) -- функция, определяемая равенством (5.19).

График плотности вероятности приведен на рис. 5.2.

Математическое ожидание, дисперсия и среднее квадратическое отклонение СВ Х определяются равенствами:

Вид распределения модуля случайной величины, распределенной по нормальному закону, зависит от соотношения между x0 и ун (рис. 5.2).

Для определения медианы нужно решить уравнение

а для определения моды -- уравнение

Второе уравнение при x0> ун, а первое при любых x0 и ун решаются численными или графическими методами. При x0н мода равна нулю.

Формулы (5.33) и (5.34) можно выразить через срединное отклонение Ен исходного нормального распределения, заменив в них ун на Ен, ц(t) на ц^(t), Ф0(t) на Ф^0(t). Функции ц^(t) и Ф^0(t) определяются равенствами (5.13) и (5.21).

Вычисление: Расчеты по формулам (5.33) -- (5.37) производятся с помощью табл. II и III. Если расчетчик предпочитает выражение исходного нормального распределения через срединное отклонение, то используются табл. IV и V.

Задание №2: Смоделируем случайную величину, имеющую закон распределения модуля случайной величины, распределенной по нормальному закону

Программа в Turbo Pascal:

PROGRAM Kursov_2;
Uses Graph,Crt;
Var mi:array[1..100] of integer;
hi,pix,hn,hr,xi:array[1..200] of real;
m,i,l,j,n,a,b:integer;
mx,Dx,Gx,Sk,Ex,fx,xl,Dxs,Gxs,Sks,Exs:real;
xmin,xmax,pod,c,c1,c2,x,v:real;
st:string;
{---------------Генерирование числовых последовательностей-----------}
BEGIN
Randomize;
ClrScr;
Write(' Введите количество элементов последовательности: ' );
ReadLn(n);
a:=-3; b:=6;
WriteLn;
WriteLn(' Исходная последовательность с нормальным ');


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.