На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


контрольная работа Развитие количественных представлений у детей старшего дошкольного возраста

Информация:

Тип работы: контрольная работа. Добавлен: 19.09.2012. Сдан: 2012. Страниц: 4. Уникальность по antiplagiat.ru: < 30%

Описание (план):


?18
 
 
 
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ
Государственное образовательное учреждение
Высшего профессионального образования
«ЧЕРЕПОВЕЦКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»
_______________________________________________________________
Институт педагогики и психологии
Кафедра дошкольного образования
 
Контрольная работа
 
По дисциплине Теория и методика математического развития детей
Студентки             Фолтя Валентины Вячеславовны
Группа: 4ЗСДШ – 21
Тема №4
Тема: «Развитие количественных представлений у детей старшего дошкольного возраста»
 
 
 
Разработал:                                                                               М.А. Арсенова
Заведующий кафедрой                                                              Н.В. Иванова
 
                                                                                 Оценка:_________________
 
Дата_____________________                             
Фамилия преподавателя - М.А. Арсенова
Подпись преподавателя _ _____________
 
 
 
 
Содержание:
1.     Введение……………………………………………………...3
2.Понятие множества, его характеристики………………4
        3. Влияние пространственно – качественных особенностей предметов на восприятие детьми численности множеств………..6
       4. Методика формирования количественных представлений у      детей старшего дошкольного возраста……………………………..9
        5.  Сравнение множеств……………………………………….11
        6. Практическая часть…………………………………………13
 
        7. Список литературы…………………………………………19
 
 
 
 
 
 
 
 
 
 
Введение.
Одними из самых сложных знаний, умений и навыков, включенных в содержание общественного опыта, которым овладевают подрастающие поколения, являются математические. Они носят отвлеченный характер, оперирование ими требует выполнения системы сложных умственных действий. В повседневной жизни, в быту и в играх ребенок достаточно рано начинает встречаться с такими ситуациями, которые требуют применения, хотя и элементарного, но все же математического решения, знания таких отношений, как много, мало, больше, меньше, поровну, умения определить количество предметов в множестве, выбрать соответствующее количество элементов из множества и т. д. Сначала с помощью взрослых, а затем самостоятельно дети разрешают возникающие проблемы. Таким образом, уже в дошкольном возрасте дети знакомятся с математическим содержанием и овладевают элементарными вычислительными умениями, а формирование у них элементарных математических представлений является одним из важных направлений работы дошкольных учреждений.
 
 
 
 
 
 
 
 
 
 
Понятие множества, его характеристики.
              Множество — это совокупность объектов, которые рассматриваются как единое целое. Мир, в котором живет человек, представлен разнообразными множествами: мно­жество звезд на небе, растений, животных вокруг него, множество разных звуков, частей собственного тела. Мно­жество характеризуется различными свойствами, то есть мно­жество задано некоторыми характеристиками. Под этими ха­рактеристиками подразумеваются такие свойства, которы­ми владеют все объекты, принадлежащие данному множеству, и не владеет ни один предмет, который не при­надлежит ему, т.е. этот предмет не является его элементом. Множество в отличие от неопределенной множественности имеет границы и может быть охарактеризовано  натуральным множеством.
В таком случае считают, что число обозначает мощность множества.
В начале развития счетной деятельности сравнение мно­жеств осуществляется поэлементно, один к одному. Элемен­тами множества называют объекты, составляющие множе­ства. Это могут быть реальные предметы (вещи, игрушки, рисунки), а также звуки, движения, числа и др. Сравнивая множества, человек не только выявляет равномощность мно­жеств, но и отсутствие у множества того или другого эле­мента, той или другой его части. Есть два способа определе­ния мощности множества: первый — пересчитывание всех его элементов и называние результата числом; другой — вы­деление характерологических особенностей множества.
              Элементами множества могут быть не только отдельные объекты, но и их совокупности. Например, при счете пара­ми, тройками, десятками. В этих случаях элементами множе­ства выступает не один предмет, а два, три, десять — сово­купность.
              Основными операциями с множествами являются: объе­динение, пересечение и вычитание.
              Объединением (суммой) двух множеств называют третье множество, которое включает все элементы этих множеств. При этом сумма множеств не всегда равняется сумме чисел элементов множеств. Она равна сумме чисел элементов толь­ко тогда, когда в обоих множествах нет общих элементов. Если таковые есть, то в сумму они включаются только один раз. Например, в загадке «Два отца и два сына. Сколько их всего?» видим пример объединения множеств, когда сумма элементов не равна сумме чисел. Поскольку один и тот же человек включается дважды (и в первое, и во второе множе­ство), он считается один раз. Действия с множествами лучше всего изобразить графи­чески.
Пересечением двух множеств называется множество, ко­торое состоит из их общих элементов.
Так, например, если одно множество характеризуется по признаку формы (различные треугольники), а второе множество — по цвету (красные геометрические фигуры), то объединением этих множеств будут красные треугольники.
Влияние пространственно – качественных особенностей предметов на восприятие детьми численности множеств
На восприятие детьми численности оказывают влияние различные качественные и пространственные свойства предметов: способ расположения предметов в пространстве, величина занимаемой ими площади, длина и плотность ряда предметов, размер, цвет, форма, назначение. Это свойственно в основном детям младшего дошкольного возраста (2-4 года) и объясняется недифференцированностью восприятия, недостаточно развитой способностью абстрагироваться от несущественного при восприятии и оценивать количество по заданному признаку. При восприятии и воспроизведении у детей множеств доминируют наиболее яркие признаки (цвет, расположение). Опознавательным признаком на данном уровне является не количество, а однородность по цвету, форме, пространственному расположению. В зарубежной и советской психологии эта особенность восприятия детьми количества нашла отражение в работах Ж.Пиаже, Л.Ф.Обуховой.
Л.Ф.Юбухова выявила последовательность освоения детьми принципа сохранения количества. От отсутствия понимания сохранения, когда видимое выдается за действительное, дети переходят к пониманию сохранения на небольших количествах и к полному признанию сохранения количества (инвариативности), неизменности количества при различных его видоизменениях. Для понимания независимости количества предметов от их несущественных свойств необходимо осмысление детьми противоречий между внешними признаками предметов, познаваемыми визуально, и числовыми, познаваемыми на основе счета. По мнению Ж.Пиаже, это выражается в усвоении идеи числа таким образом, что число объектов в группе «сохраняется» независимо от того, как их растасовать или расположить.
В работах психологов и математиков – методистов выявлена также зависимость воспроизведения детьми количества (адекватность, неадекватность) от способа расположения предметов в пространстве: линейного и в виде числовой фигуры. Расположение предметов в виде числовой фигуры в большей мере, нежели линейное, способствует восприятию множества или целостного единства, но затрудняет восприятия отдельных элементов. Об этом свидетельствует характер выполнения задания. На предложение взять и положить столько же пуговиц сколько их нарисовано на числовой фигуре, дети двух-трех лет берут одной рукой горсть пуговиц из коробки и высыпают их на карточку. Старшие дети пытаются накладывать пуговицы на их изображения, но далеко не всегда в том же количестве. Они заполняют и промежутки между отдельными изображениями. Следует отметить, что движения рук и глаз детей иные, чем при воспроизведении линейно расположенного множества. Как правило, в данном случае дети, накладывая пуговицы на рисунки, действуют одной рукой. Если ребенок раскладывает пуговицы правой рукой, он обычно начинает от нижнего рисунка справа  и направление его движения идет по кругу против часовой стрелки. Если же накладывание пуговиц проводится левой рукой, оно также начинается обычно с нижней пуговицы слева и направление движения идет по часовой стрелке.
Эти особенности движения позволяют считать, что множество, изображенное в виде числовой фигуры, действительно воспринимается детьми как единое замкнутое целое, но точное количество не воспроизводится. Однако в этот же период численность линейно расположенного множества начинает воспроизводиться адекватно. Из этого следует, что, чем меньше дети, тем большее значение для восприятия количества  приобретает линейное расположение предметов. При обучении, пользуясь приемом наложения пуговиц на рисунки, дети уже в возрасте трех лет точно воспроизводят количество предметов, если они расположены в ряд.
Расположение предметов в виде квадрата или треугольника как более сложная форма расположения значительно затрудняет выделение и воспроизведение элементов. Следовательно, в дочисловой период обучения и при обучении счетной деятельности целесообразно располагать ту или иную совокупность предметов линейно.
На определенной ступени развития, в два – три года, в действиях со множествами, от безразличия к цвету, форме, размеру предметов дети переходят к подбору их по принципу однородности. Они по собственной инициативе обменивают некоторые пуговицы, чтобы все предметы были одинакового цвета. Эта требовательность к однородности появляется при любом расположении предметов.
Из этого следует, что детей раннего возраста необходимо научить группировать предметы по разным признакам, что способствует овладению классификацией как одной из умственных операций. Поэтому одна из задач обучения детей  трех лет состоит в формировании умения составлять множества из разных по качеству элементов.
Методика формирования количественных представлений у детей старшего дошкольного возраста
Задачи и содержание работы, направленной на развитие количественных представлений в старшей группе, определяются с учетом знаний и умений, усвоенных детьми в средней группе. К ним относятся умения считать предметы, звуки, движения в пределах 5, сравнивать их, определять и практически устанавливать равенство и неравенство. Число воспринимается детьми при этом как итог счета, показатель определенного количества предметов, опознавательный и различительный признак ряда совокупностей.
В старшем дошкольном возрасте (шестой год жизни) количественные представления в процессе обучения формируются под влиянием овладения счетной и измерительной деятельностью. Число выступает как результат счета, характеристика эквивалентных, равночисленных множеств, как результат измерения.
Так же продолжается работа по формированию представлений о численности (количественная характеристика) множеств, способах образования чисел, количественной оценке величин путем измерения.
Дети осваивают приемы счета предметов, звуков, движений
по осязанию в пределах 10, определяют количество условных мерок при измерении протяженных объектов, объемов жидкостей, масс сыпучих веществ.
В процессе применения педагогом разнообразных способов сравнения предметных множеств дети учатся образовывать числа путем увеличения или уменьшения данного числа на единицу, уравнивать множества по числу предметов при условии количественных различий между ними в 1, 2 и 3 элемента.
Как и в средней группе, дети отсчитывают количество предметов по названному числу или образцу (числовая фигура, карточка) или больше (меньше) на единицу, упражняются в обобщении по числу предметов ряда конкретных множеств, отличающихся пространственно-качественными признаками (форма, расположение, направление счета и др.) на основе восприятия различными анализаторами.
С целью подготовки детей к счету групп их обучают умению разбивать совокупности в 4, 6, 8, 9,  10 предметов на группы  по 2, 3, 4, 5 предметов, определять количество групп и число отдельных предметов.
Дети знакомятся с количественным составом чисел из единиц в пределах 5 на конкретных предметах и в процессе измерения, что уточняет и конкретизирует представление о числе, единице, месте числа в натуральном ряду чисел.
В старшем дошкольном возрасте продолжается обучение детей различать количественное и порядковое значение числа, вырабатываются умения применять количественный и порядковый счет в практической деятельности.
В ходе сравнения множеств и чисел дети знакомятся с цифрами от 0 до 9. Учатся относить их к числам, различать, использовать в играх.
В старшей группе дети фактически могут уже делить целое (предмет, геометрическую фигуру) на 2 и 4 равные части, устанавливают зависимости между частью и целым, частями целого; овладевают умением пользоваться в речи понятиями (словами), отражающими количественные отношения: поровну, столько же, одинаково по количеству, такое же число, не поровну, число, цифра, наложение, приложение, составление пар, часть, целое, половина,  четверть и др.
Дети учатся правильно строить и использовать в речи простые и сложные предложения, краткие и точные выражения, объяснять полученный результат, отвечая на вопросы: «Что ты сделал? Что узнал? Как ты выполнил задание? Как ты будешь выполнять задание?» Усиливается внимание к осмыслению вопросов со словами сколько, который, адресованных товарищам, воспитателю.
В ходе обучения воспитатель в своей речи использует слова и выражения, смысл которых понятен детям: количество, сравни по количеству, отсчитай, по скольку, признак и т. д.
Сравнение множеств.
Сравнение двух или нескольких множеств предметов путем поэлементного соотнесения имеет место и в работе с детьми дошкольного возраста. Оно помогает вычленить способ получения следующего и предыдущего числа, а также убедить детей в равенстве или неравенстве множеств по числу предметов. Поэтому все известные детям способы сравнения: наложение, приложение (по рядам и столбцам), составление пар, соединение предметов линиями, применение эквивалентов — следует использовать и в обучении детей старшего дошкольного возраста.
Особое внимание нужно обратить на обнаружение соответствия или несоответствия с помощью попарного соединения предметов линиями и применения предметов-заместителей (эквивалентов). Это способствует не только развитию умений обобщать знания и способы действий, но и формированию абстрактных форм мышления.
В ходе упражнений на установление соответствия с помощью линий реальные предметы, их изображения (по договоренности с детьми) заменяют условными обозначениями (кукол — точками, открытки — квадратами) и отделяют одни от других замкнутой линией. В одном круге рисуют точки, в другом — квадратики. С помощью линии или стрелок выясняется, получит ли каждая кукла открытку или нет, чего будет больше (меньше).
Для сравнения двух множеств, отличающихся на один или несколько элементов, используются предметы-эквиваленты, из сопоставления которых делается вывод о количественной стороне первого и второго множества. Этот прием удобен, когда невозможно непосредственно соотносить предметы по количеству, при измерении.
В качестве эквивалентов используются фишки, косточки на счетах и др. Таким образом можно определить равенство или неравенство числа окон в групповой комнате и музыкальном зале. Вначале определяют число окон в зале и откладывают на верхней полоске наборного полотна (или счет
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.