На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


реферат Методы технологии и концепции утилизации углеродосодержащих промышленных и твердых бытовых отходов

Информация:

Тип работы: реферат. Добавлен: 21.09.2012. Сдан: 2011. Страниц: 10. Уникальность по antiplagiat.ru: < 30%

Описание (план):


Методы  технологии и концепции  утилизации углеродосодержащих промышленных и твердых  бытовых отходов
В.М. Бельков 
Всероссийский научно-исследовательский институт железнодорожного транспорта (ВНИИЖТ)
    Разработана концепция, рассмотрены методы и  технологии утилизации углеродсодержащих отходов, приведены технико-экономические показатели технологий утилизации отходов и выбраны наиболее перспективные из них
    На  начало 1999 года на предприятиях различных  отраслей промышленности накопилось около 1500 млн. тонн токсичных отходов производства и потребления [1]. Ежегодно на предприятиях Российской Федерации образуется около 90 млн. тонн токсичных промышленных отходов (ПО), из которых 87 млн. тонн относятся к III и IV классам опасности. Количество отходов потребления, или твердых бытовых отходов (ТБО), ежегодно возрастает в России на 30 млн. тонн [2].
    В 1999 году предприятиями использовано в собственном производстве около 40 млн. тонн (40%) и полностью обезврежено 9 млн. тонн (10%) от общего количества образовавшихся за год отходов. Остальные отходы переданы на полигоны для захоронения.
    Последние годы нефтешламы - отходы II класса опасности - не принимаются на захоронение  из-за переполнения полигонов промышленных отходов. Нефтеперерабатывающие заводы, нефтебазы, локомотивные и вагонные депо железнодорожной отрасли вынуждены накапливать нефтешламы в специальных бетонированных хранилищах. Строительство новых хранилищ и накопление нефтешлама в старых носило стихийный характер, поэтому оценить накопленное количество таких отходов не представляется возможным, их может быть и десятки, и сотни миллионов тонн.
    В европейских государствах 40% отходов  превращают биологической обработкой в органические удобрения, 10% сжигают  на мусоросжигательных заводах, 40% отходов  захоранивают в третьих странах, а оставшиеся 10%, в основном, активный ил, сбрасывают в моря [3].
    Большинство ПО и ТБО содержат органические соединения, которые можно извлекать для  повторного использования, сжигать  с получением дешевой тепловой и  электрической энергией или обезвреживать с помощью штаммов микроорганизмов. Например, с помощью промышленных процессов регенерации отработанных смазок и масел можно очищать только некоторые из них, использующиеся при невысоких температурах. При рабочих температурах более 100°С в смазках и маслах образуются относительно летучие смолистые вещества - канцерогены, очистка от которых сложна и крайне дорога. Поэтому во всех странах мира отработанные смазки и масла в основном сжигают как топливо.
    Для эффективного обезвреживания отходов  необходимы технологии, наносящие минимальный экологический ущерб окружающей природной среде, имеющие низкие капитальные затраты и позволяющие получать прибыль. Разнообразие отходов по химическому составу не позволяет создать универсальную технологию утилизации твердых и жидких ПО и ТБО.
    В настоящей статье приведены основные источники углеродсодержащих отходов, их калорийность и методы утилизации, физико-химические параметры и технико-экономические  показатели основных известных к  настоящему времени технологий обезвреживания, выработаны критерии оценки и выбора метода и технологии обезвреживания углеродсодержащих отходов, предложены наиболее перспективные из них.
1 Источники углеродсодержащих  отходов.
    Основные  источники углеродсодержащих отходов  в России, их примерная норма образования в год, состав и калорийность приведены в Таблице 1.
    Объем загрязненного нефтепродуктами  грунта, образующегося за год, составляет 510 млн. тонн. Норма образования ТБО - 130 млн. тонн. Объем осадков биологических  очистных сооружений составляет 0,8 млн. тонн/год. Нормы образования нефтешламов - 3 млн. тонн. Хранение и утилизация вышеперечисленных отходов является наиболее острой проблемой для России. Объемы остальных отходов незначительны.
    Для выработки концепции обезвреживания углеродсодержащих отходов оценим тепловой эффект сжигания отходов при температуре 1100°С с учетом влажности и фазовых переходов. При обезвреживании углеродсодержащих отходов сжиганием важной физико-химической характеристикой является теплотворная способность сырья. Рассчитаем наименьшую концентрацию нефтепродуктов в отходах, при которой тепловой эффект реакции - нулевой (неотрицательный) для различных содержаний механических примесей и влажности. Минимальные концентрации или содержания углеводородов в отходах сведены в Таблицу 2.
    В среднем, как следует из Таблицы 2, для получения положительного теплового эффекта реакции горения  отходов содержание углеводородов  должно быть выше 10%. КПД печей сжигания не превышает 70-75%, поэтому, содержание углеводородов в отходах не должно быть меньше 14%. Таким образом, если отходы содержат более 14% нефтепродуктов, то их рациональнее сжигать, получая при этом тепловую или электрическую энергию, если менее 14% - то для обезвреживания таких отходов лучше использовать микробиологический метод.
    Таблица 1 Источники углеродсодержащих отходов
№ п/п Наименование  источника отхода Состав отхода Количество  отхода млн. тонн/год Калорийность, ккал/кг
1 Твердые бытовые  отходы Органические  вещества 60-70% (углерода - 35%), зольность 30-40%, влажность обшей массы 40-50% В России - 130,0 [1] В Москве и Московской области ~ 6,0 [4]
2500
2 Осадки биологических  очистных сооружений городов поселков и предприятий Сухое вещество активного ила 44-76% С, 5-8% Н, 1-3% S, 3-10% М 12-40% 0 Железнодорожные предприятия . 0,1, Москва . 0,05, Россия в целом - 0,5 [3] 1000-2000 при влажности  50-60%
3 Нефтешламы  из отстойников нефтеперерабатывающих  вводов железнодорожных предприятий  нефтебаз и ремонтных заводов Нефтепродукты 20-30%, вода 20-30%, механические примеси  40-50% В России в целом 3.0, нефтеперерабатывающие заводы - 1.4 нефтебазы 0.3 федеральные железные дороги- 1.3 [1] 2500-3500
4 Загрязненный  нефтепродуктами грунт территорий железнодорожных предприятий, нефтебаз нефтеперерабатывающих заводов Нефтепродукты 0.1-5 г/кг, Влажность 40-50% от обшей массы Железные дороги 330, нефтебазы 80, нефтеперерабатывающие  заводы - 100 0.4-20.0
5 Угольный шлам Углерод 10-30% Зольность 70-90% 5.0[1] 500-1500
6 Отработанные  масла и смазки, бумажные фильтры  машин и механизмов Нефтепродукты 90%, влага 8%, металлические и минеральные  включения - 2% Железные дороги 0.06 по России в целом - 0 4 5500-6500
7 Старые деревянные шпалы Древесина 75%, креозот 5%, влага - 20% Железные дороги . 0.1, трамвайные пути . 0.015 4500-5500
    Таблица 2 Эксплуатационные параметры многокамерных печей
Фирма- производитель, марка печи Производительность, кг/ч Потребление электроэнергии, кВт/ч Масса в тоннах Стоимость, тыс. долл Срок окупаемости, лет
Норвегия
С01АКОС200 100 ТБО 15.0 2.9 350.0 То же
УE5TА МАХ 255 100 ТБО 15.0 3.0 320.0 То же
Италия
КС/M1МЕР 100 ТБО 200 6.85 270.0 То же
Россия
ИН-50.1 50 ТБО 1.2 2.2 26.825 0,5
ИН-50.2 100 ТБО 3.0 3.0 31.250 0,5
ИН-50.2К 100 3.0 4.0 49.230 0,5
ИН-50.3 80 8 8 31.500  
ИН-50.4 150 10 7.5 31.750  
ИН-50.4К 150 10 7.5 51.780  
ИН-50.6 500-800 45 6.0 143.750  
    Таблица 3. Минимальное содержание углеводородов  в отходах при нулевой энтальпии  реакции их горения
    № п/п Содержание  механических примесей, % масс Влажность, % масс Содержание  углеводородов, % масс
    1 20 71,2 8,8
    2 30 60,8 9,2
    3 40 50,5 9,5
    4 50 40,1 9,9
    5 60 29,7 10,3
    6 70 19,3 10,7
    7 80 8,9 111
    8 88 0 11,3
    9 90 30,0 20,0 (3500 ккал/кг)
    В пункте 9 Таблицы 2 приведен также тепловой эффект реакции горения и состав нефтешламов, образующихся на железнодорожных предприятиях, нефтеперерабатывающих заводах и нефтебазах.
2. Методы утилизации  углеродсодержащих  отходов
    В мировой практике для утилизации и обезвреживания ПО и ТБО используют термические, химические, биологические  и физико-химические методы
    К термическим методам обезвреживания отходов относятся сжигание, газификация  и пиролиз.
    Сжигание - наиболее отработанный и используемый способ. Этот метод осуществляется в печах различных конструкций  при температурах не менее 1200°С. В  результате сгорания органической части отходов образуются диоксид углерода, пары воды, оксиды азота и серы, аэрозоль, оксид углерода, бензопирен и диоксины. Зола, имеющая в своем составе неподвижную форму тяжелых металлов, накапливается в нижней части печи и периодически вывозится на полигоны для захоронения или используется в производстве цемента.
    Газификация - широко используемый в металлургии  способ переработки некоксующихся  углей - осуществляется в вихревых реакторах  или печах с кипящим слоем  при температурах 600-1100°С в атмосфере газифицирующего агента (воздух, кислород, водяной пар, диоксид углерода или их смесь). В результате реакции образуются синтез-газ (H2, СО), туман из жидких смолистых веществ, бензопирена и диоксинов. Реакция газификации протекает в среде с восстановительными свойствами, поэтому оксиды азота и серы практически не образуются. Масса тумана при 600°С может доходить до 30% от массы синтез-газа. При увеличении температуры газификации доля тумана в массе синтез-газа падает и при температуре более 1100°С близка к нулю.
    Горючая смесь водорода и оксида углерода сжигается на горелках при 1400-1600°С или  используется в каталитическом процессе синтеза метилового спирта. Зола, остающаяся после газификации, может содержать  остаточный углерод и соли тяжелых  металлов, растворимые в воде. После проверки золы на отсутствие бензопирена, диоксинов и тяжелых металлов в подвижной форме она может быть отправлена на захоронение.
    Пиролиз - наиболее изученный процесс широко используется для производства активированного  угля из древесины. Пиролиз нефтесодержащих отходов проводят при температуре 600-800°С с вакуумированием реактора. При этом протекают реакции коксо- и смолообразования, разложения высокомолекулярных соединений на низкомолекулярные, жидкую и газообразную фракции, а если углеводородные отходы содержат серу, то образуются также сероводород и меркаптаны. Оксиды азота и серы практически не образуются.
    Химические  методы обезвреживания жидких и твердых  нефтесодержащих отходов заключаются  в добавлении к нейтрализуемой массе химических реагентов. В зависимости от типа химической реакции реагента с загрязнением происходит осаждение, окисление-восстановление, замещение, комплексообразование.
    Методы  осаждения основаны на ионных реакциях с образованием мало растворимых  в воде веществ и особенно эффективны при нейтрализации тяжелых металлов и радионуклидов. Метод осаждения органических загрязнений основан на двух типах реакций: комплексообразование и кристаллизация. Осаждение используют для очистки грунта от полихлорированных бифенилов, пентахлорфенолов, хлорированных и нитрированных углеводородов. Реагенты могут быть как в жидкой, так и в газообразной фазах. Однако при этом происходит увеличение объема обезвреженной массы.
    Методы  управления окислительно-восстановительной  реакцией среды позволяют переводить соединения тяжелых металлов и радионуклидов в трудно растворимые в воде гидрооксиды, а также разрушать цианиды, нитраты, тетра-хлориды и другие хлорорганические соединения.
    Для химической иммобилизации или компексообразования используют неорганические вяжущие типа цемента, золы, силикатов калия и натрия, извести и гелеобразующих веществ (бентонит или целлюлоза). Иммобилизацию используют для связывания тяжелых металлов, радиоактивных отходов, полициклических и ароматических углеводородов, трихлорэтилена и нефтепродуктов.
    Недостатком комплексообразования является неустойчивость вяжущих веществ к атмосферной  и грунтовой влаге, быстрым изменениям температуры, что приводит в результате к разрушению композиционного материала. Объем отходов после комплексообразования уменьшается только в 2 раза.
    Биологические методы обезвреживания ПО и ТБО находят  все более широкое применение в нашей стране и особенно за рубежом. Они основаны на способности различных  штаммов микроорганизмов в процессе жизнедеятельности разлагать или усваивать в своей биомассе многие органические загрязнители. В процессе биообезвреживания происходит вторичное загрязнение атмосферного воздуха продуктами гниения клеток микроорганизмов - сероводородом и аммиаком.
    Биологическая очистка чаще всего используется для нейтрализации органических токсикантов и тяжелых металлов, а также азотных и фосфорных соединений в почвах и грунтах. Биологические методы можно условно подразделить на микробиодеградацию загрязнителей, биопоглощение и перераспределение токсикантов.
    Микробиодеградация - это деструкция органических веществ  определенными культурами микрофлоры, внесенными в грунт. Процесс биоразложения  протекает с заметной скоростью  при оптимальной температуре  и влажности. Микробиодеградация может быть использована во всех случаях, где естественный микробиоценоз сохранил жизнеспособность и видовое разнообразие. Хотя процесс идет крайне медленно, его эффективность высока.
    Биопоглощение - это способность некоторых растений и простейших организмов ускорять биодеградацию органических веществ или аккумулировать загрязнения в клетках.
    Физико-химические методы образуют наиболее представительную группу методов обезвреживания ПО и  ТБО. При создании физических полей  в пористых средах начинают протекать одновременно множество физико-химических процессов.
    При наложении поля механических напряжений загрязненный грунт интенсивно перемешивается и происходит очистка частиц грунта от поверхностных загрязнений.
    Гидродинамическое воздействие на грунт или почву сопровождается суффозией, выщелачиванием, адсорбцией, диффузией и выносом загрязнений из порового пространства грунтов.
    Перспективен  метод сверхкритической экстракции углекислым газом органических загрязнений.
    Постоянное  электрическое поле, приложенное  к водонасыщенному грунту или почве, вызывает протекание электрохимических и электрокинетических процессов. К электрохимическим процессам относятся: электролиз, электрофлотация, электрокоагуляция, электродеструкция, электрохимическое обеззараживание, ионный обмен, электрохимическое окисление и выщелачивание, электродиализ, а к электрокинетическим - электроосмос, электрофорез и электромиграция.
    Электролиз  порового раствора загрязненных грунтов  и почв - это окислительно-восстановительный  процесс, в результате протекания которого происходит разложение химических соединений. Он используется для очистки грунтов от микроорганизмов и называется электрохимическим обеззараживанием. Эффективность метода доходит до 99%.
    При электрофлотации удаление нефтепродуктов происходит пузырьками газа, образующимися при электролизе и поднимающимися к поверхности.
    Электрокоагуляция - это процесс агрегации микрочастиц  минерального происхождения и органических молекул. В методе электрокоагуляции  используют железные и алюминиевые  электроды, при растворении которых образуются гидрооксиды, адсорбирующие загрязнения и выпадающие затем в осадок.
    Электрохимическое окисление применяется для очистки  грунтов от хлорированных углеводородов  и фенола. Эффективность окисления  фенола 70-92%.
    Электрохимическое выщелачивание - это метод очистки грунтов, основанный на высолаживании загрязнений или переводе тяжелых металлов в подвижную форму. Однако метод требует внесения дополнительных химических реагентов.
    Электродеструкция осуществляется при электрохимическом разложении токсичных органических соединений на электродах с образованием нетоксичных веществ. Преимущество метода в низкой стоимости и высокой эффективности.
    При электродиализе порового раствора грунтов  и почв происходит очистка от загрязнений  в коллоидной форме, обессоливание в средней части межэлектродного пространства.
    Электрокинетические методы начали широко применяться с 60-х годов. Электрокинетическая обработка  применяется для очистки глинистых  и суглинистых грунтов. Электрокинетические  явления, наблюдающиеся в пористых средах при протекании постоянного электрического тока, подразделяются на электроосмос и электрофорез.
    При электроосмосе ионы, содержащиеся в  жидкости, перемещаются относительно неподвижной заряженной поверхности  минеральных частиц грунта, увлекая при этом загрязнения в растворенном или жидком состоянии. Электроосмотическая скорость потока пропорциональна произведению силы потока на величину дзетта-потенциала и на удельную поверхность пористой среды.
    При протекании электрофореза в поровом пространстве грунта, заполненном полностью или частично водой, перемещаются минеральные частицы. Это явление имеет крайне незначительную роль в электрокинетическом переносе загрязнений в диссоциированной форме, но определяющую в переносе коллоидных и заряженных минеральных частиц Электрофоретическое перемещение коллоидных и микрочастиц наблюдается в макропористых грунтах (песчаник, супесь).
    Под действием напряжения, приложенного к электродам, которые погружены  в скважины, вода и экотоксиканты  в коллоидном состоянии перемещаются к электродным резервуарам, из которых затем вода с загрязнениями извлекается на поверхность и очищается одним из физико-химических методов. Эффективность очистки может доходить до 99%.
    Отдельную группу составляют электромагнитные методы, основанные на термическом эффекте при взаимодействии электромагнитного излучения с веществом
    В сверхвысокочастотных полях происходит быстрый и равномерный прогрев  грунта, и при этом протекают дегидратация, диссоциация карбонатов, окисление  и даже плавление. Десорбирующиеся органические соединения обезвреживаются, например, каталитическим методом.
    Обезвреживание  ПО и ТБО с помощью ультрафиолетового  и лазерного излучения относится  также к электромагнитным методам. Активация ароматических молекул  УФ и лазерным излучениями приводит к диссоциации молекул с образованием радикалов и активных комплексов, быстрому окислению и полимеризации.
    Эффективен  для очистки грунта от нефтепродуктов ультразвук. Начиная с критического значения звукового давления акустических волн, в жидкости возникает кавитация. При схлопывании кавитационных полостей образующиеся микроструи с линейными скоростями 300-800 м/с срывают с поверхности твердых частиц нефтяные загрязнения. Эффективность очистки может достигать 99,5-99,8%. При кавитационных разрывах жидкости происходит ионизация и активация молекул, стимулирующие окисление и полимеризацию углеводородных молекул.
    Рассмотренные выше методы являются базой для уже  созданных технологий обезвреживания ПО и ТБО или технологий, разрабатываемых в настоящее время. Каждый метод обезвреживания отходов и технология на его основе имеют определенную нишу, то есть совокупность физико-химических параметров отходов и возможностей метода, оптимальное сочетание которых позволяет достичь наибольшей прибыли или минимальных затрат на обезвреживание определенного вида отходов при наименьшем экологическом ущербе природе.
3. Технологии утилизации  углеродсодержаших  отходов
    Западные  страны начали активно заниматься переработкой ПО и ТБО еще в 60-е годы. В  течение 10 лет в США, Японии, Германии, Франции и Швейцарии была создана разветвленная инфраструктура по сбору, сортировке и первичной переработке отходов и построены высокопроизводительные мусоросжигательные заводы.
    В России мусоросжигательные заводы появились только десять-пятнадцать лет назад в Москве, Санкт-Петербурге и некоторых других городах. Мусоросжигательные заводы, построенные по западным лицензиям и требующие первичной сортировки ТБО, не приспособлены к российским условиям. В результате отсутствия первичной сортировки отходов заводы по сжиганию мусора работают эпизодически, объем сжигания не превышает 2% от объема ТБО.
    Для правильного выбора технологии утилизации определенного вида отходов, необходимо знание основных физико-химических характеристик и экономических показателей существующих технологий обезвреживания отходов.
    Технологии  термического обезвреживания ПО и ТБО
    Фирмы многих стран мира, занимающиеся сжиганием  опасных отходов, сталкиваются с  проблемой превышения содержания оксидов  азота, серы и углерода, а также диоксинов и бензопирена в газовых выбросах мусоросжигательных заводов над предельно допустимыми выбросами. Вредные выбросы появляются, в основном, при загрузке новой порции отходов и резком понижении концентрации кислорода в реакторе или из-за плохого перемешивания горючей массы и, следовательно, низкой теплопередачи. Для борьбы с эффектом резкого понижения концентрации кислорода в реакторе печи оборудуют системами остановки подачи отходов до момента восстановления концентрации кислорода до оптимальной или быстрой инжекции кислорода в зону горения (инсинераторы фирмы Рrех Qir, Ash Groove Cement, USA). Камеры сгорания для отходов имеют либо устройство жидкого впрыскивания, либо предназначены для сжигания только твердых отходов.
    В печи утилизации с жидким впрыском отходы, смешанные с воздухом, подаются через струйные форсунки в камеры сгорания. Размер капель, вылетающих из форсунок, не превышает 40 мкм. Уменьшение размера капель увеличивает скорость испарения с их поверхности и перемешивание с воздухом, что повышает эффективность горения. Для обеспечения оптимального распыления жидких отходов их сдвиговая вязкость не должна превышать 0.7 Па-с [6]. Отходы с большей сдвиговой вязкостью подогревают, или смешивают с жидкими отходами, обладающими низкой сдвиговой вязкостью. Разработаны специальные типы струйных и вращающихся форсунок [5]. Простые струйные форсунки используются редко, так как часто засоряются.
    Конструкции камеры сгорания современных инсинераторов  предусматривают горизонтальную или вертикальную организацию горения с турбулентным закрученным потоком [6,7]. Камеры с закрученными потоками могут утилизировать тепловыделение на уровне 1 Гкал/ч с одного кубического метра камеры сгорания, что в 4 раза больше, чем при горении без закручивания потока. Конструкция камеры сгорания такова, что исключает прямое воздействие пламени на термостойкую облицовку печи. Рабочий температурный диапазон инсинераторов 850-1650°С.
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.