На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


доклад Никель

Информация:

Тип работы: доклад. Добавлен: 23.09.2012. Сдан: 2011. Страниц: 5. Уникальность по antiplagiat.ru: < 30%

Описание (план):


Никель  
Ни?кель элемент побочной подгруппы восьмой группы, четвертого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 28. Обозначается символом Ni (лат. Niccolum). Простое вещество никель — это пластичный ковкий переходный металл серебристо-белого цвета, при обычных температурах на воздухе покрывается тонкой защитной плёнкой оксида. Химически малоактивен.
История
Никель (англ., франц. и нем. Nickel) открыт в 1751 г. Однако задолго до этого саксонские горняки хорошо знали руду, которая внешне походила на медную руду и применялась в стекловарении для окраски стёкол в зелёный цвет. Все попытки получить из этой руды медь оказались неудачными, в связи с чем в конце XVII в. руда получила название купферникель (Kupfernickel), что приблизительно означает «Медный дьявол». Руду эту (красный никелевый колчедан NiAs) в 1751 г. исследовал шведский минералог Кронштедт. Ему удалось получить зелёный окисел и путём восстановления последнего — новый металл, названный никелем. Когда Бергман получил металл в более чистом виде, он установил, что по своим свойствам металл похож на железо; более подробно никель изучали многие химики, начиная с Пруста.
Физические  свойства
Металлический никель имеет серебристый цвет с  желтоватым оттенком, очень твёрд, вязкий и ковкий, хорошо полируется, притягивается  магнитом, проявляя магнитные свойства при температурах ниже 340 °C.
Химические  свойства
Дихлорид никеля (NiCl2)
Атомы никеля имеют внешнюю электронную  конфигурацию 3d84s2. Наиболее устойчивым для никеля является состояние окисления Ni(II).
Никель  образует соединения со степенью окисления +2 и +3. При этом никель со степенью окисления +3 только в виде комплексных солей. Для соединений никеля +2 известно большое количество обычных и комплексных соединений. Оксид никеля Ni2O3 является сильным окислителем.
Никель  характеризуется высокой коррозионной стойкостью — устойчив на воздухе, в воде, в щелочах, в ряде кислот. Химическая стойкость обусловлена его склонностью к пассивированию — образованию на его поверхности плотной оксидной плёнки, обладающей защитным действием. Никель активно растворяется в азотной кислоте.
С оксидом  углерода CO никель легко образует летучий  и весьма ядовитый карбонил Ni(CO)4.
Тонкодисперсный порошок никеля пирофорный (самовоспламеняется на воздухе).
Никель  горит только в виде порошка. Образует два оксида NiO и Ni2O3 и соответственно два гидроксида Ni(OH)2 и Ni(OH)3. Важнейшие растворимые соли никеля — ацетат, хлорид, нитрат и сульфат. Растворы окрашены обычно в зелёный цвет, а безводные соли — жёлтые или коричнево-жёлтые. К нерастворимым солям относятся оксалат и фосфат (зелёные), три сульфида NiS (черный), Ni2S3 (желтовато-бронзовый) и Ni3S4 (черный). Никель также образует многочисленные координационные и комплексные соединения. Например, диметилглиоксимат никеля Ni(C4H6N2O2)2, дающий чёткую красную окраску в кислой среде, широко используется в качественном анализе для обнаружения никеля.
Водный  раствор сульфата никеля в банке имеет зелёный цвет.
Водные  растворы солей никеля(II) содержат ион гексаакваникеля(II) [Ni(H2O)6]2+. При добавлении к раствору, содержащему эти ионы, аммиачного раствора происходит осаждение гидроксида никеля (II), зелёного желатинообразного вещества. Этот осадок растворяется при добавлении избыточного количества аммиака вследствие образования ионов гексамминникеля(II) [Ni(NH3)6]2+.
Никель  образует комплексы с тетраэдрической  и с плоской квадратной структурой. Например, комплекс тетрахлороникелат (II) [NiCl4]2? имеет тетраэдрическую структуру, а комплекс тетрацианоникелат(II) [Ni(CN)4]2? имеет плоскую квадратную структуру.
В качественном и количественном анализе для  обнаружения ионов никеля (II) используется щелочной раствор бутандиондиоксима, известного также под названием диметилглиоксима. При его взаимодействии с ионами никеля (II) образуется красное координационное соединение бис(бутандиондиоксимато)никель(II). Это — хелатное соединение и бутандиондиоксимато-лиганд является бидентатным.
Нахождение  в природе
Никель  довольно распространён в природе — его содержание в земной коре составляет ок. 0,01 %(масс.). В земной коре встречается только в связанном виде, в железных метеоритах содержится самородный никель (до 8 %). Содержание его в ультраосновных породах примерно в 200 раз выше, чем в кислых (1,2 кг/т и 8г/т). В ультраосновных породах преобладающее количество никеля связано с оливинами, содержащими 0,13 — 0,41 % Ni. Он изоморфно замещает железо и магний. Небольшая часть никеля присутствует в виде сульфидов. Никель проявляет сидерофильные и халькофильные свойства. При повышенном содержании в магме серы возникают сульфиды никеля вместе с медью, кобальтом, железом и платиноидами. В гидротермальном процессе совместно с кобальтом, мышьяком и серой и иногда с висмутом, ураном и серебром, никель образует повышенные концентрации в виде арсенидов и сульфидов никеля. Никель обычно содержится в сульфидных и мышьяк-содержащих медно-никелевых рудах.
    никелин (красный никелевый колчедан, купферникель) NiAs
    хлоантит (белый никелевый колчедан) (Ni, Co, Fe)As2
    гарниерит (Mg, Ni)6(Si4O11)(OH)6*H2O и другие силикаты
    магнитный колчедан (Fe, Ni, Cu)S
    мышьяково-никелевый блеск (герсдорфит) NiAsS,
    пентландит (Fe,Ni)9S8
В растениях  в среднем 5?10?5 весовых процентов никеля, в морских животных — 1,6?10?4, в наземных — 1?10?6, в человеческом организме — 1…2?10?6. О никеле в организмах известно уже немало. Установлено, например, что содержание его в крови человека меняется с возрастом, что у животных количество никеля в организме повышено, наконец, что существуют некоторые растения и микроорганизмы — «концентраторы» никеля, содержащие в тысячи и даже в сотни тысяч раз больше никеля, чем окружающая среда.
Месторождения никелевых руд
Основные  месторождения никелевых руд  находятся в Канаде, России (Мурманская область, Норильский район, Урал), Кубе, ЮАР, Новой Каледонии и на Украине.
Природные изотопы никеля
Природный никель содержит 5 стабильных изотопов: 58Ni (68.27 %), 60Ni (26.10 %), 61Ni (1.13 %), 62Ni (3.59 %), 64Ni (0.91 %). Существуют также искусственно созданные изотопы никеля, самые стабильные из которых — 59Ni (период полураспада 100 тысяч лет), 63Ni (100 лет) и 56Ni (6 суток).
Получение
Общие запасы никеля в рудах на начало 1998 г. оцениваются в количестве 135 млн т., в том числе достоверные — 49 млн.т. Основные руды никеля — никелин (купферникель) NiAs, миллерит NiS, пентландит (FeNi)9S— содержат также мышьяк, железо и серу; в магматическом пирротине также встречаются включения пентландита. Другие руды, из которых тоже добывают Ni, содержат примеси Co, Cu, Fe и Mg. Иногда никель является основным продуктом процесса рафинирования, но чаще его получают как побочный продукт в технологиях других металлов. Из достоверных запасов, по разным данным, от 40 до 66 % никеля находится в «окисленных никелевых рудах» (ОНР), 33 % — в сульфидных, 0,7 % — в прочих. По состоянию на 1997 г. доля никеля, произведённого переработкой ОНР, составила порядка 40 % от общемирового объёма производства. В промышленных условиях ОНР делят на два типа: магнезиальные и железистые.
Тугоплавкие магнезиальные руды, как правило, подвергают электроплавке на ферроникель (5-50 % Ni+Co, в зависимости от состава сырья и технологических особенностей).
Наиболее  железистые — латеритовые руды перерабатывают гидрометаллургическими методами с применением аммиачно-карбонатного выщелачивания или сернокислотного автоклавного выщелачивания. В зависимости от состава сырья и применяемых технологических схем конечными продуктами этих технологий являются: закись никеля (76-90 % Ni), синтер (89 % Ni), сульфидные концентраты различного состава, а также металлические никель электролитный, никелевые порошки и кобальт.
Менее железистые — нонтронитовые руды плавят на штейн. На предприятиях, работающих по полному циклу, дальнейшая схема переработки включает конвертирование, обжиг файнштейна, электроплавку закиси никеля с получением металлического никеля. Попутно извлекаемый кобальт выпускают в виде металла и/или солей. Ещё один источник никеля: в золе углей Южного Уэльса в Англии — до 78 кг никеля на тонну. Повышенное содержание никеля в некоторых каменных углях, пефтях, сланцах говорит о возможности концентрации никеля ископаемым органическим веществом. Причины этого явления пока не выяснены.
«Никель долгое время не могли получить в  пластичном виде вследствие того, что  он всегда имеет небольшую примесь  серы в форме сульфида никеля, расположенного тонкими, хрупкими прослойками на границах металла. Добавление к расплавленному никелю небольшого количества магния переводит серу в форму соединения с магнием, которое выделяется в  виде зерен, не нарушая пластичности металла.»
Основную  массу никеля получают из гарниерита и магнитного колчедана.
    Силикатную руду восстанавливают угольной пылью во вращающихся трубчатых печах до железо-никелевых окатышей (5—8 % Ni), которые затем очищают от серы, прокаливают и обрабатывают раствором аммиака. После подкисления раствора из него электролитически получают металл.
    Карбонильный способ (метод Монда). Вначале из сульфидной руды получают медно-никелевый штейн, над которым пропускают СО под высоким давлением. Образуется легколетучий тетракарбонилникель [Ni(CO)4], термическим разложением которого выделяют особо чистый металл.
    Алюминотермический способ восстановления никеля из оксидной руды: 3NiO + 2Al = 3Ni +Al2O3
Применение
Сплавы
Никель  является основой большинства суперсплавов — жаропрочных материалов, применяемых в аэрокосмической промышленности для деталей силовых установок.
    монель-металл (65 — 67 % Ni + 30 — 32 % Cu + 1 % Mn), жаростойкий до 500 °C, очень коррозионно-устойчив;
    белое золото (например 585 пробы содержит 58,5 % золота и сплав (лигатуру) из серебра и никеля (или палладия));
    нихром, сплав сопротивления (60 % Ni + 40 % Cr);
    пермаллой (76 % Ni + 17 %Fe + 5 % Cu + 2 % Cr), обладает высокой магнитной восприимчивостью при очень малых потерях на гистерезис;
    инвар (65 % Fe + 35 % Ni), почти не удлиняется при нагревании;
    Кроме того, к сплавам никеля относятся никелевые и хромоникелевые стали, нейзильбер и различные сплавы сопротивления типа константана, никелина и манганина.[5]
Никелирование
Никелирование — создание никелевого покрытия на поверхности другого металла с целью предохранения его от коррозии. Проводится гальваническим способом с использованием электролитов, содержащих сульфат никеля(II), хлорид натрия, гидроксид бора, поверхностно-активные и глянцующие вещества, и растворимых никелевых анодов. Толщина получаемого никелевого слоя составляет 12 — 36 мкм. Устойчивость блеска поверхности может быть обеспечена последующим хромированием (толщина слоя хрома 0,3 мкм).
Бестоковое никелирование проводится в растворе смеси хлорида никеля(II) и гипофосфита натрия в присутствии цитрата натрия:
NiCl2 + NaH2PO2 + H2O = Ni + NaH2PO3 + 2HCl
Процесс проводят при рН 4 — 6 и 95 °C.
Производство  аккумуляторов
Производство  железо-никелевых, никель-кадмиевых, никель-цинковых, никель-водородных аккумуляторов.
Радиационные  технологии
Нуклид 63Ni, излучающий ?+-частицы, имеет период полураспада 100,1 года и применяется в крайтронах.
Медицина
    Применяется при изготовлении брекет-систем (никелид титана).
    Протезирование
Монетное  дело
Никель  широко применяется при производстве монет во многих странах. В США монета достоинством в 5 центов носит разговорное название «никель».
Музыкальная промышленность
Также никель используется для производства обмотки струн музыкальных инструментов.
Биологическая роль
Биологическая роль: никель относится к числу  микроэлементов, необходимых для  нормального развития живых организмов. Однако о его роли в живых организмах известно немного. Известно, что никель принимает участие в ферментативных реакциях у животных и растений. В организме животных он накапливается  в ороговевших тканях, особенно в  перьях. Повышенное содержание никеля в почвах приводят к эндемическим заболеваниям — у растений появляются уродливые формы, у животных — заболевания глаз, связанные с накоплением никеля в роговице. Токсическая доза (для крыс) — 50 мг. Особенно вредны летучие соединения никеля, в частности, его тетракарбонил Ni(CO)4. ПДК соединений никеля в воздухе составляет от 0,0002 до 0,001 мг/м3 (для различных соединений).
Физиологическое действие
Никель — основная причина аллергии (контактного дерматита) на металлы, контактирующие с кожей (украшения, часы, джинсовые заклепки). В Евросоюзе ограничено содержание никеля в продукции, контактирующей с кожей человека.
Карбонил никеля [Ni(CO)4] — очень ядовит. Предельно допустимая концентрация его паров в воздухе производственных помещений 0,0005 мг/м?.
В XX веке было установлено, что поджелудочная железа очень богата никелем. При введении вслед за инсулином никеля продлевается действие инсулина и тем самым повышается гипогликемическая активность. Никель оказывает влияние на ферментативные процессы, окисление аскорбиновой кислоты, ускоряет переход сульфгидрильных групп в дисульфидные. Никель может угнетать действие адреналина и снижать артериальное давление. Избыточное поступление никеля в организм вызывает витилиго. Депонируется никель в поджелудочной и околощитовидной железах.
Токсические свойства никеля и  его соединений
Немаловажную  роль в загрязнении окружающей среды  играют тяжелые металлы, к которым  относится и никель.
Содержание  никеля в земной коре составляет 8–10–3 % (по массе). В основном он встречается  в виде сульфидных медно-никелевых, окисленных силикатных и мышьяковистых  руд. Никель используют для получения  высокопластичных и стойких к коррозии сплавов (с железом, хромом, медью и др.); для никелирования медицинских инструментов, деталей автомобилей, велосипедов, химической аппаратуры, изготовления аккумуляторов; в жировой и парфюмерной промышленности; для приготовления катализаторов; в производстве органических соединений.
Основные  источники загрязнения окружающей среды никелем – предприятия  горнорудной промышленности, цветной  металлургии, машиностроительные, металлообрабатывающие, химические, приборостроительные и  другие, использующие в технологических  процессах различные соединения никеля; тепловые электростанции, работающие на мазуте и каменном угле; автотранспорт.
Загрязнение никелем чаще всего локальное: образуются биогеохимические «провинции» с  повышенным его содержанием в  почве, воде, воздухе и местных  продуктах питания растительного  и животного происхождения.
В воду никель может попадать в результате выветривания из коренных пород и  вымывания из почвы. Значительные количества никеля поступают в водоемы со сточными водами промышленных предприятий.
Загрязнения атмосферного воздуха соединениями никеля происходит в результате выбросов предприятиями по его производству и переработке; при сжигании твердого и жидкого топлива. Никель поступает  в воздух с выхлопными газами автотранспорта в количествах, зависящих от вида используемого топлива, а также  в виде продуктов износа автомобильных  шин и деталей автомобилей. 

Таблица. Содержание никеля (мг/кг сырой массы) в продуктах растительного и  животного происхождения
Зерновые  и бобовые 0,089–1,09
Овощи, фрукты 0,1–2,0
Мясо (говядина, баранина, свинина) 0,02–0,1
Печень 0,125–0,5
Куриные яйца 0,02–0,03
Содержание  никеля в почве составляет в среднем 4х10–3 % и колеблется в зависимости от вида почвы: в черноземных – 4,6х10–3 %; в каштановых – 5,9х10–3 %, в красноземе субтропиков – 6,5х10–3 %.
В морской  воде содержится около 10–5 % никеля, в пресных водах – 10–6–10–7%, в подземных –  
до 10–5 %.

Содержание  никеля в продуктах зависит от геохимических особенностей района их производства и использованных технологий. В продуктах растительного происхождения  никеля обычно больше, чем в продуктах  животного происхождения (таблица).
В сутки  в организм человека поступает с  пищей в среднем 0,3–0,6 мг никеля, что, по мнению многих исследователей, покрывает суточную потребность  в нем взрослого человека.
Загрязняя почву, никель и его соединения вызывают изменения микробных ценозов: снижается количество бактерий в поверхностном слое почвы и возрастает на глубине 10–15 см; уменьшается количество актиномицетов и возрастает численность грибов.
В водоемах в результате сорбции ионов, образования нерастворимых соединений, а также поглощения различными организмами происходит осаждение никеля. В речных илах его количество достигает 0,01%.
Токсичность никеля и его соединений зависит  от пути поступления в организм и  растворимости. Токсичность растворимых  в воде соединений никеля (сульфата и хлорида) примерно в 30 раз выше, чем плохо растворимых (оксида и  сульфита).
Хлорид  никеля в концентрациях 0,1–1,5 мг/л вызывает гибель ряда водорослей; в концентрации 0,7 мг/л и выше – гибель дафний. В концентрации 4,0–4,5 мг/л он вызывает гибель гольяна и карпа через 200 ч, а в концентрации 8,1 мг/л – через несколько часов.
В концентрации 1 мг/л никель вызывает хлороз овса, при более высоких концентрациях наблюдается задержка роста овощных и зерновых культур, существенное увеличение содержания никеля в растениях.
В организм никель поступает в основном через  дыхательные пути, желудочно-кишечный тракт и кожу.
У рабочих, занятых в производстве никеля и  его соединений, распространены заболевания  верхних дыхательных путей и  бронхолегочной системы: бронхиты, эмфизема (расширение) легких, снижение жизненной емкости легких, астма. Как хронические, так и острые отравления никелем и его соединениями могут приводить к летальному исходу. Известен случай гибели рабочего, выполнявшего сварочные работы в течение 90 мин без респиратора.
Разные  виды животных имеют разную чувствительность к загрязнению воздуха соединениями никеля. При высоких концентрациях  никеля (для данного вида) в воздухе  интоксикация развивалась в первые же часы, что сопровождалось появлением одышки, апатией, потерей аппетита, рвотой, диареей и симптомами поражения нервной системы; признаки легочной недостаточности нарастали вплоть до гибели животных через несколько часов. При хроническом воздействии, как и при остром, в первую очередь нарушения происходили в легочной ткани.
Интоксикация  никелем и его соединениями наблюдается  и при попадании его в организм с продуктами питания или водой.
Хроническое воздействие хлорида никеля (до 8,6 мг/кг) на людей в течение 3 месяцев приводило к проявлению клинических симптомов интоксикации: летаргии, атаксии (расстройству координации движений), нарушению дыхания, снижению температуры тела, слюнотечению, косоглазию, запору. Снижался баланс и всасывание кальция, магния и фосфора, меди, уменьшалась фиксация йода (воздействие на функциональное состояние щитовидной железы), были отмечены признаки развития белковой дистрофии.
Абсолютно смертельная доза металлического никеля (взвесь металлической пыли) для крыс и мышей составляет 1200 мг/кг, минимальная смертельная доза – 500 мг/кг. У животных наблюдались снижение массы тела, лейкоцитоз, повышение температуры тела, изменение проницаемости сосудов кожи, нарушение функции печени и почек и изменения в ЭКГ. В большинстве случаев животные погибали через 3–5 дней после введения никеля.
Описан  случай смерти двухлетнего ребенка, проглотившего 570 мг/кг сульфата никеля, через 8 ч в результате остановки сердца.
В малых  концентрациях никель может вызвать  у чувствительных к нему людей  дерматиты, экзему рук. В то же время  эти же заболевания возникают  и при недостаточном содержании никеля в пищевых продуктах.
Данные  о токсичности никеля и его  соединений при воздействии на кожу немногочисленны. Кожные аппликации хлористого никеля морским свинкам вызывали аллергические реакции на фоне токсического эффекта. Втирание 5%-ного раствора сульфата никеля в кожу спины кроликов приводило  к появлению симптомов выраженной интоксикации.
В крови  людей, больных контактными дерматозами, выявлено повышенное содержание никеля.
Первые  эпидемиологические исследования онкологической опасности различных соединений никеля были начаты более 60 лет назад. Смертность от рака всех локализаций  среди рабочих 6 предприятий по производству никеля (за 13 лет) превышала смертность в контрольной группе – населении  городов, расположенных вблизи этих предприятий.
Согласно  классификации Международного агентства  исследований рака (IARC) металлический  никель (пыль) и гипосульфит никеля являются канцерогенами и опасны в концентрациях 0,0004–0,4 и 0,0001–0,1 мг/м3, соответственно.
Медико-гигиеническое  обследование рабочих электролизного цеха на никелевом комбинате «Апатит» в г. Мончегорске (воздействие никеля в концентрациях 0,087–0,183 мг/м3) показало, что частота спонтанных абортов у женщин, работающих на комбинате, намного превышала частоту спонтанных абортов в семьях, в которых никто из супругов не подвергался профессиональному воздействию никеля. Риск спонтанных абортов у женщин при действии никеля на мужчин в 2 раза ниже по сравнению с риском при действии никеля непосредственно на женщин.
Установлено, что максимальное накопление никеля в тканях плода происходит на 12–19-й  неделе беременности. Выявлено наличие  никеля и в организме новорожденных. Это свидетельствует о переходе никеля через плаценту. Медицинское  исследование выявило значительное увеличение количества новорожденных  с пороками развития у работниц никелевого комбината (16,9%) по сравнению с контрольной  группой женщин-строителей (5,8%).
В культуре клеток китайского хомячка сульфат, гипосульфит и оксид никеля вызывают выраженный мутагенный эффект.
Соединения  никеля обычно не влияют на частоту  хромосомных аберраций в лимфоцитах человека, клетках костного мозга  мышей, но увеличивают частоту появления  микроядер.
Введение  в желудок самцов мышей сульфата никеля в дозе 5,0 и 1,0 мг/кг (1/20 и 1/100 ДЛ50 – дозы, вызывающей гибель 50% животных) вызывало выраженный мутагенный эффект: увеличение частоты доминантных летальных мутаций (ДЛМ) на всех стадиях сперматогенеза. При спаривании с самками самцов, в половых клетках которых возникли ДЛМ, происходит либо гибель оплодотворенной яйцеклетки до имплантации в матку, либо гибель развивающегося эмбриона.
Воздействие соли никеля в дозе 0,5 мг/кг (1/200 ДЛ50) не увеличивало частоту ДЛМ в половых клетках ни на одной из стадий сперматогенеза. На основании полученных данных установлен пороговый уровень (1/100 ДЛ50) и не действующий уровень (1/200 ДЛ50) сульфата никеля.
Для веществ  в различных средах существуют максимальные концентрации, при которых эти  вещества не оказывают неблагоприятного действия на людей ни на производстве, ни в быту. В нашей стране установлены  предельно допустимые концентрации (ПДК) вредных веществ в производственных условиях и в окружающей среде.
ПДК в  воздухе рабочей зоны – это  концентрации, при которых вредные  вещества не вызывают у работающих (при средней 8-часовой рабочей  смене на протяжении всего рабочего стажа) заболеваний или отклонений в состоянии здоровья непосредственно  в процессе работы или в отдаленные сроки.
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.