На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Шпаргалка Шпаргалка по "Технологии сварки"

Информация:

Тип работы: Шпаргалка. Добавлен: 25.09.2012. Сдан: 2011. Страниц: 8. Уникальность по antiplagiat.ru: < 30%

Описание (план):


23
 

24 

  Ударный метод основан на использовании энергии удара (воздействия ударной нагрузки), под действием которой свая своей нижней заостренной частью внедряется в грунт. По мере погружения она смещает частицы грунта в стороны, частично вниз или наверх. В результате погружения свая вытесняет объем грунта, практически равный объему ее погруженной части. Меньшая часть этого грунта оказывается на дневной поверхности, большая - смешивается с окружающим грунтом и значительно уплотняет грунтовое основание. Зона заметного уплотнения грунта вокруг сваи составляет 2...3 диаметра сваи.
  Ударную нагрузку на оголовок сваи создают  специальные механизмы:
  паровоздушные молоты, которые приводятся в действие силой сжатого воздуха или пара, непосредственно воздействующих на ударную часть молота;
  дизель-молоты, работа которых основана на передаче энергии сгорающих газов ударной части молота;
  вибропогружатели  - передача колебательных движений рабочего органа на сваю (использование вибрации);
  вибромолоты - сочетание вибрации и ударного воздействия на сваю.
  Вибропогружатели  и вибромолоты чаще используют при  погружении трубчатых свай-оболочек большого диаметра, при погружении в грунт и извлечении шпунтовых свай.
25
  Вибрационный  метод наиболее эффективен при несвязных водонасыщенных грунтах. Применение метода для погружения свай в маловлажные плотные грунты возможно лишь при устройстве лидирующих скважин, т. е. при предварительном пробуривании скважин.
  Более универсальным является виброударный способ погружения свай с помощью вибромолотов. При работе вибромолота наряду с вибрационным воздействием на сваю периодически опускается ударник, оказывая и динамическое воздействие на голову сваи.
Наиболее  распространены пружинные вибромолоты. В них при вращении валов с дебалансами в противоположных направлениях создаются постоянные колебания. Когда зазор между ударником и наковальней сваи оказывается меньше амплитуды колебаний, ударник периодически ударяет через наковальню по свае. Вибромолоты могут самонастраиваться, т. е. увеличивать энергию удара с повышением сопротивления грунта погружению сваи. Масса ударной части вибромолота применительно к погружению железобетонных свай должна быть не менее 50% от массы сваи и составлять 650..1350 кп.
  Виброударный  способ применим в связанных плотных грунтах, и позволяет в 3...8 раз быстрее при одинаковой мощности с вибрационным способом осуществлять погружение свай в грунт за счет одно- временной вибрации и забивки. При этом должно быть обеспечено жесткое соединение вибропогружателя со сваей.
  26
  Погружение  свай вдавливанием применяют для коротких свай сплошного и трубчатого сечения (3...5 м). Статическое вдавливание  осуществляется   в   такой   последовательности:   сваю   устанавливают  в вертикальное положение в направляющей стреле агрегата. Далее на голову сваи опускают и закрепляют оголовник, передающий давление от базовой машины (трактора, экскаватора) через систему блоков и полиспастов непосредственно на сваю, которая благодаря этому давлению постепенно погружается в грунт. После достижения сваей проектной отметки погружение прекращают, снимают наголовник, агрегат переезжает на новую позицию. Применимо статическое вдавливание с использованием одновременно задействованных двух механизмом
  27
Погружение  свай   завинчиванием   основано   на  завинчивании стальных и железобетонных свай со стальным наконечником с помощью мобильных установок, смонтированных на базе автомобилей или других самоходных средств.    
    Метод применяют чаще всего при устройстве фундаментов под мачты линий электропередачи, радиосвязи и других сооружений, где в достаточной мере могут быть использованы несущая способность винтовых свай и их сопротивление выдергиванию (рис. 4.9). Установка для завинчивания состоит из рабочего органа, приводов вращения и наклона рабочего органа, гидросистемы, пульта управления, четырех гидравли-ческих выносных опор и вспомога-тельного оборудования. Рабочий орган кабестан - механизм,
29
  Набивные  сваи устраивают на месте их будущего положения путем заполнения скважины (полости) бетонной смесью или песком. В настоящее время применяют большое количество вариантов решения таких свай. Их основные преимущества:
    возможность изготовления любой длины;
    отсутствие значительных динамических воздействий при устройстве свай;
    применимость в стесненных условиях;
¦ применимость при усилении существующих фундаментов.
  Набивные  сваи изготовляют бетонными, железобетонными  и грунтовыми, причем имеется возможность устройства свай с уширенной пятой. Способ устройства свай прост - в предварительно пробуренные скважины подается для заполнения бетонная смесь или грунты, в основном песчаные.
  Применяют следующие разновидности набивных свай - сваи Страуса, буронабивные, пневмонабивные, вибротрамбованные, частотрамбованные, вибронабивные, песчаные и грунтобетонные. Длина свай достигает 20...30 м при диаметре 50... 150 см. Сваи, изготовляемые с применением установок фирм Като, Беното, Либхер могут иметь диаметр до 3,5 м, глубину до 60 м, несущую способность до 500 т.
30
  Буронабивные  сваи. Характерной особенностью устройства буронабивных свай является предварительное бурение скважин до заданной глубины.
  Самими  первыми в нашей стране, на основе которых применяются все существующие разновидности буронабивных свай, являются сваи Страуса, которые были предложены в 1899 г. Изготовление свай включает следующие операции:
    пробуривание скважины;
    опускание в скважину обсадной трубы;
    извлечение из скважины осыпавшегося грунта;
    заполнение скважины бетоном отдельными порциями;
    трамбование бетона этими порциями;
    постепенное извлечение обсадной трубы.
  В пробуренную до проектной отметки (5... 12 м) скважину осторожно опускают трубу диаметром 25...40 см и далее загружают бетонной смесью. После заполнения скважины на глубину около 1 м бетонную смесь трамбуют и медленно поднимают вверх обсадную трубу до тех пор, пока высота смеси в трубе не уменьшится до 0,3...0,4 м. Снова загружается бетонная смесь и процесс повторяется. Учитывая, что диаметр скважины больше диаметра обсадной трубы и поверхность пробуренного грунта оказывается неровной, шероховатой, при наполнении бетонной смесью обсадной трубы, ее подъеме и уплотнении смеси, бетон заполнит весь свободный объем, включая и зазор между стенками скважины и обсадной трубой. Часть бетона и цементного молока проникнет в грунт, повысив его прочность.
    Недостатки  способа - невозможность контролировать плотность, и монолитность бетона по всей высоте сваи, возможность размыва  несхватившейся бетонной смеси грунтовыми водами.
  Армирование свай производят только в верхней  части, где на глубину 1,5...2,0 м в свежеуложенный бетон устанавливают металлические стержни для их последующей связи с ростверком.
31
  Пневмотрамбованные  сваи. Сваи применяют при устройстве фундаментов в насыщенных водой грунтах с большим коэффициентом фильтрации. В этом случае бетонную смесь укладывают в полость обсадной трубы при постоянном повышенном давлении воздуха (0,25...0,3 МПа), который подается от компрессора через ресивер, служащий для сглаживания колебаний давления. Бетонную смесь подают небольшими порциями через специальное устройство - шлюзовую камеру, действующую по принципу пневмонагнетательных установок, применяемых для транспортирования бетонной смеси. Шлюзовая камера закрывается специальными клапанами. Подача бетонной смеси в камеру осуществляется при закрытом нижнем клапане и открытом верхнем; при заполнении камеры смесью верхний клапан закрывается, нижний, наоборот, открывается, смесь выжимается в скважину.
  Набивные  сваи любого типа следует бетонировать без перерывов. При расположении свай одна от другой менее чем на 1,5 м их выполняют через одну, чтобы не повредить только что забетонированные. Пропущенные скважины бетонируют при второй проходке бетонолитной установки, после набора ранее забетонированными сваями достаточной прочности и несущей способности. Такая последовательность работ предусматривает предохранение как готовых скважин, так и свежезабетонированных свай от повреждения.
  Буронабивные  сваи обладают рядом недостатков, которые  сдерживают их более широкое применение. К таким недостаткам можно отнести небольшую удельную несущую способность, высокую трудоемкость буровых работ, необходимость крепления скважин в неустойчивых грунтах, сложность бетонирования свай в водонасыщенных грунтах и трудность контроля качества выполненных работ.
  Устройство  свай в продавленных скважинах достаточно эффективно в сухих грунтах. При устройстве таких свай в грунте создается уплотненная зона, повышается прочность грунта и снижается его деформативность. Устройство набивных свай в уплотненных скважинах производят методами продавливания без извлечения грунта на поверхность.
  Данная  технология работ базируется на образовании  скважины путем многократного сбрасывания с высоты чугунного конуса, в результате чего пробивается скважина. Затем скважину порционно заполняют бетонной смесью, щебнем или песком и уплотняют до образования уширенной части в основании сваи. В верхней части при укладке бетонной смеси ее уплотняют вибрированием. Разработано много модификаций этого метода. Образование скважин и полостей в грунте без его выемки осуществляют: пробивкой сердечниками и обсадными трубами с помощью молотов, продавливанием вибропогружателями и вибромолотами, пробивкой снарядами и трамбовкой, пробивкой пневмопробойниками, расширением гидравлическими уплотнителями, продавливанием с помощью винтовых устройств.
32
Вытрамбованные  сваи используют в сухих связанных  грунтах. В пробуренную скважину с помощью вибропогружателя, закрепленного на экскаваторе, погружают до проектной отметки стальную обсадную трубу, имеющую на конце съемный железобетонный башмак. Полость трубы заполняют на 0,8...1,0 м бетонной смесью, уплотняют ее с помощью специальной трамбующей штанги, подвешенной к вибропогружателю
В результате башмак вместе с бетонной смесью вдавливается в грунт, при этом образуется уширенная пята. Обсадная труба заполняется бетонной смесью порциями с постоянным уплотнением. По мере заполнения скважины бетонной смесью осуществляется подъем обсадной трубы экскаватором при работающем вибропогружателе, который значительно снижает адге-зию трубы с бетоном в процессе ее извлечения
33
Частотрамбованные сваи устраивают путем забивки обсадной трубы в пробу-ренную скважину вместе с
надетым на конце  чугунным башмаком, который остается в грунте
Загружение  бетонной смеси в обсадную трубу осуществляют порциями за 2...3 приема. Сечение сваи формируется и обсадная труба извлекается из скважины с помощью молота двойного действия, передающего усилия через обсадную трубу.
Обсадную трубу  с чугунным башмаком под действием  ударов молота погружают в грунт до проектной отметки. Погружаясь, труба раздвигает частицы грунта и уплотняет его. Когда труба достигает нижней точки в ее полость опускают арматурный каркас (при необходимости), далее через воронку из вибробадьи подают в полость обсадной трубы жесткую бетонную смесь с осадкой конуса 8... 10 см. После заполнения обсадной трубы
на большую  площадь илизаглубления в плотные грунты) винтовые лопасти наконечников могут иметь в диаметре до 3 м, минимальный диаметр лопастей составляет 30 см; длина свай может превышать 20 м. Конструкция рабочего органа позволяет выполнять следующие операции: втягивать винтовую сваю внутрь трубы рабочего органа (предварительно на сваю надевают инвентарную металлическую оболочку), обеспечивать заданный угол погружения сваи в пределах 0...45о от вертикали, погружать сваю в грунт путем вращения с одновременным использованием осевого усилия.
34
    . Технология устройства  ростверков
  Конструкцию ростверка и технологию его устройства принимают в зависимости от типа свай. Ростверки объединяют группу свай в одну конструкцию и распределяют на них нагрузки от сооружения. Они чаще всего представляют собой непрерывную ленту по всему контуру здания в плане, включая внутренние стены. При использовании железобетонных свай ростверки могут быть выполнены из монолитного и сборного железобетона
  В зависимости от типа здания или сооружения ростверки разделяют на высокие  и низкие. При забивных сваях, головы которых после забивки могут  оказаться на разных отметках, перед устройством ростверка необходимо выполнить трудоемкие операции по выравниванию голов свай. Для этого необходимо под определенный уровень срубить (срезать) бетон свай, обрезать или загнуть их арматуру.
35
В  строительной   практике   широко   применяется   разборно-переставная опалубка, состоящая из  отдельных щитов,  устанавливаемых вручную или с помощью кранов, и поддерживающих  их  частей  — кружал,   ребер,   схваток, стяжек,  хомутов.
42
Скользящая, или подвижная  опалубка широко применяется при строительстве силосных башен, цементных складов, зерновых   элеваторов,   резервуаров, водонапорных  башен  и  других  сооружений,   имеющих   большую   высоту   и относительно   небольшое   поперечное   сечение. Опалубка  состоит    из металлических стенок или прочных деревянных щитов,  охватывающих  сооружение по всему  контуру  с  внутренней  и  наружной  сторон. Подъем  опалубки  на очередную  рабочую  позицию  при  бетонировании  осуществляется  при  помощи домкратной рамы. Заполнение  непрерывно   поднимаемой   опалубки   бетоном производится слоями 10—15 см без  перерывов,  при    этом  уровень  бетонной смеси не доводится до верха форм  на  15—20см. Перерывы в  бетонировании более 2—3 ч не  рекомендуются.  Уплотнение  бетона  производится  обычными методами стержневым вибратором с гибким валом.
       Применение скользящей опалубки  освобождает от необходимости   устраивать леса   и   многократной    сборки   и   разборки опалубки.
43
      Металлическая опалубка и оснастка к ней изготовляются в механических мастерских  или  цехах  металлоконструкций.  Детали  металлической  опалубки выполняются  из  стали   марки Ст.0. Заготовки   элементов    опалубки обрабатываются  с достаточно   высоким   классом   точности.   Допускаемые отклонения от проектных размеров в длине и ширине на 1 погонный  метр  щитов  металлической щитовой опалубки  не  должны  превышать  2  мм,  отклонения  в расположении отверстий для соединительных элементов (клиньев,  болтов  и  т.д.) — 0,5 мм.
      Допускаемые  отклонения  в   размерах  элементов  подвижной,  катучей   и подъемно-переставной опалубок должны приниматься в каждом  отдельном  случае в соответствии с указаниями, приведенными в проектах опалубки.
       Металлическая  опалубка  проходит   контрольную   сборку.   Детали  ее, соприкасающиеся с бетоном, покрывают смазкой, а остальные окрашивают,  после чего все элементы опалубки маркируют.
       Металлическая опалубка обеспечивает  ровную, гладкую поверхность бетона  и как вид многооборачиваемой  инвентарной опалубки имеет много  достоинств.  Она значительно  дороже   деревянной,   но   практически   имеет   беспредельную оборачиваемость.    Считается    экономически    целесообразным    применять металлическую опалубку при ее оборачиваемости не менее 50 раз. Кроме этого металлическая опалубка  обладает  следующими  положительными качествами, а именно: жесткостью, легкостью распалубки (при  соответствующей смазке поверхностей опалубки), отсутствием деформаций при различных  режимах влажности. К недостаткам металлической опалубки  относятся  высокая ее  стоимость, теплопроводность, трудность крепления различных элементов к опалубке
     Железобетонная  опалубка в период бетонирования выполняет роль  опалубки, а в последующем является постоянным конструктивным элементом сооружения.
     Достоинством  железобетонной  опалубки  является   исключение   процесса распалубки. В связи с этим значительно упрощается ее крепление. К недостаткам железобетонной опалубки относятся высокая теплопроводность и сравнительно большой вес.
     Применяется  она   в   основном   при   строительстве   гидротехнических сооружений,  где   является   постоянной   наружной   защитной   облицовкой сооружения.
46
  Стержневую  арматуру изготовляют гладкого профиля (из-за малой эффективности выпуск ее сокращается) и периодического с расположением выступов по винтовой линии или елочкой. Арматуру подразделяют в зависимости от технологии изготовления на горячекатаную (делится на 5 классов от A-1 до A-VI по старому обозначению –по новому обозначению А-240 (А-1), А300 (А- III), А400 (А- IV), А800 (АV), А1000 (АV1)) и горячекатаную с последующим упрочнением вытяжкой в холодном состоянии, она имеет 2 класса - А-Пв и А-Шв.
62
4. Метод термоса
     Заранее нагретую бетонную смесь уложенный  в зимних условиях, выдерживают преимущественно  методом термоса, основанным на применении утепленной опалубки с устройством сверху защитного слоя. Бетонную смесь температурой 20---80 0С укладывают в утепленную опалубку, а открытые поверхности защищают от охлаждения. Обогревать ее при этом не требуется, так как количество теплоты, внесенных в смесь при приготовлении, а также выделяющиеся в результате физико-химических процессов взаимодействия цемента с водой (экзотермии), достаточно для ее твердения и набора критической прочности. При проектировании термосного выдерживания бетона подбирают тип опалубки и степень ее утепления. Сущность метода термоса состоит в том, чтобы бетон, остывая до 0 0С, смог за это время набрать критическую прочность. Учитывая это, назначают толщину и вид утеплителя опалубки. Утепление опалубки выполняют без зазоров и щелей, особенно в местах стыкования теплоизоляции. Для уменьшения продуваемости опалубки и предохранения ее от увлажнения по обшивке прокладывают слой толи.
     В качестве защитного слоя применяют  толь, картон, фанеру, соломит, по которым могут быть уложены опилки, шлак, шлаковойлок, стекловата. Опалубка может  быть двойной, тогда промежутки между ее щитами засыпают опилками, шлаком или заполняют минеральной ватой, пенопластом.
     Опалубку  из железобетонных плит утепляют с  наружной стороны, навешивая на них маты. Поверхность, соприкасающуюся с бетоном, перед началом бетонирования обязательно прогревают. По окончании бетонирования немедленно утепляют  верхние открытые поверхности, при этом теплотехнические свойства этого утеплителя (покрытия) должны быть не ниже, чем у основных элементов опалубки.
     Опалубку  и утеплитель демонтируют по достижении бетоном критической прочности. Поверхности распалубленной конструкции  ограждают от резкого перепада температур во избежание образования трещин.
     Метод термоса применяют при бетонировании массивных конструкций. Степень массивности оценивают модулем поверхности Мn=F/V, где F- площадь суммарной охлаждаемой поверхности конструкции, м2 ;  V- объем конструкции, м3 .
     Конструкция считается массивной при Мn < 6, средней массивности при Мn=6…9 и ажурной при Мn>9.
     При определении Мn не учитывается площадь  поверхностей конструкций, соприкасающихся  с талым грунтом, хорошо прогретой  бетонной поверхностью или каменной кладкой. Для длинномерных изделий  и конструкций (например, колон, ригелей, балок) Мn определяют отношением периметра их поперечного сечения к его площади.
     Метод термоса применяют для конструкций  с Мn < 6, а при предварительном  разогреве бетона до 60…800C – с Мn=8…10.                                                                                                                                                  
83
К ним  относятся такие параметры как: теплостойкость, прочность, условное удлинение, водопоглощение по массе и гибкость на брусе с определённым радиусом закругления при определённой температуре. Предельно допустимые параметры для кровель из битумно-полимерных материалов, следующие: теплостойкость не ниже 55°С, условная прочность не менее 1,0 МПа, относительное удлинение не менее 10%, водопоглощение по массе через 24 часа не более 2%, гибкость на брусе с закруглением радиусом (R) 25 мм не выше 0°С. Практически все используемые сейчас материалы имеют характеристики, существенно превосходящие вышеперечисленные технические требования. Тем не менее, выбирая материал, из которого вы собираетесь или вам предлагают делать кровлю, в первую очередь стоит обратить внимание на соответствие кровельного материала именно этим параметрам.  
    Теплостойкость - это показатель, который определяет, не расплавится ли ваша кровля очень жарким летом на солнечной стороне дома. Поэтому приведенная предельно допустимая теплостойкость в 55°С довольно мала, ведь известно, что даже в Подмосковье кровли из битумно-полимерных материалов иногда разогреваются до 70-80°С. Относительное удлинение материала должно компенсировать сезонные подвижки основной конструкции и составляет для большинства широко используемых материалов 40-60%.
84
. Мастичные кровельные покрытия получают при нанесении на основание (обычно бетонное) жидковязких олигомерных продуктов, которые, отверждаясь на воздухе, образуют сплошную эластичную пленку. Мастики имеют хорошую адгезию к бетону, металлу, битумным материалам. По сути, мастичные кровельные покрытия – это полимерные мембраны, формируемые прямо на поверхности крыши. Особенно удобны мастичные материалы при выполнении узлов примыкания. Мастики могут быть двухкомпонентные (собственно мастика + отверждающая система), или однокомпонентные, отверждаемые влагой, кислородом или СO2, содержащимися в воздухе.
85
3.3 Асбестоцементные кровельные листы
  Асбестоцемент получают из смеси коротковолокнистого  асбеста (15%) и портландцемента (85%). Асбестоцементные волнистые листы, часто называемые «шифер», показали себя долговечным (до 50 лет), технологичным и достаточно декоративным материалом. Они рекомендуются для кровель с уклоном более 12°; вес 1 м2 кровли – 10-14 кг. Шиферный лист обыкновенного профиля имеет размеры 1,2х0,7 м, высота гофра составляет 28 мм. Сейчас также можно приобрести шифер среднего (высота гофра 40мм) и высокого (51 мм) профиля, а размер таких листов колеблется от 1,75х0,98 м до 2,5х1,15 м. Интересен шифер "Новинка", окрашенный полимерфосфатными красками. Он позволяет придать домам более живописный вид по сравнению с традиционными серыми шиферными крышами. Работа с шифером чрезвычайно проста. Листы кладутся внахлёст и крепятся к обрешётке гвоздями с прокладкой из рулонного кровельного материала . При монтаже шиферных крыша рекомендуется делать подкладочный слой из пергамина или рубероида. Надо отметить, что шиферные крыши характерны только для России и стран СНГ, так как повсеместно в Европе идёт борьба с использованием асбеста в строительстве.
   Усиленно муссируемое в последние  годы мнение о вредности асбестоцементных  изделий из-за присутствия в  них асбеста лишено серьезных оснований и продиктовано чисто конъюнктурными соображениями: в России находятся крупнейшие месторождения асбеста, в то время как в большинстве экономически развитых стран асбеста практически нет. Кроме того, в асбестоцементных изделиях асбест находится в связанном состоянии и не выделяется в окружающую среду.
  Отечественная промышленность выпускает несколько  типоразмеров асбестоцементных листов: длиной от 1200 до 2500 мм и толщиной от 5,5 до 8,0 мм, соответственно. Листы закрепляются по брусчатой обрешетке специальными «шиферными» гвоздями.
  Для повышения долговечности и придания декоративности асбестоцементные листы  покрывают окрасочными составами  или окрашивают в массе. Одна из последних  разработок ведущего производителя  асбестоцементных изделий ЗАО «Красный строитель» (г. Воскресенск) – шифер «Новинка», асбестоцементные волнистые листы, окрашенные полимерфосфатной краской «Полифан» (коричнево-красный, зеленый, синий и др. цвета). Окрасочный слой снижает водопоглощение, повышает морозостойкость асбестоцемента и увеличивает сроки его службы в 1,3-1,5 раза. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

87
  3.5. Металлочерепица
  Уже длительное время она остается на нашем рынке, судя по объемам продаж, едва ли не самым популярным кровельным материалом. Почему это так? Одна из причин в том, что строителям этот материал очень выгоден с точки зрения соотношения расценок на монтаж и быстроты, а так же технологичности монтажа. Ведь монтаж квадратного метра кровли еще год назад стоит почти 10 долларов. А что такое уложить один лист площадью почти 6 квадратных метров. Установка такого листа занимает всего несколько минут, даже если сажать его на саморезы (как положено), а не на гвозди (как это делается иногда). И эти несколько минут работы оценивались почти в 60 долларов. Сейчас расценки на работу несколько снизились, но эта работа остается по-прежнему очень выгодной для строителей. А кто же откажется от собственной выгоды?
      Еще одна причина популярности  металлочерепицы состоит в том,  что она издали очень напоминает  штучную керамическую черепицу. Но только издали.
      На западе она применяется  в основном как кровельное  покрытие небольших сооружений  в основном хозяйственного назначения: бензоколонки, склады, хозяйственные  постройки. В индивидуальном строительстве  он используется гораздо реже, чем в России. У нас на этот материал просто какой-то бум. Возможно, тут сказывается историческая склонность нашего потребителя к металлическим кровлям, а может быть просто потребитель всегда старается выбрать такую кровлю, за которой требуется минимальный уход. А тут предлагают как раз металлическую кровлю, да еще и похожую на натуральную черепицу. Видимо соединение этих качеств и дало такой всплеск популярности.
      По соотношению достоинств и  недостатков металлочерепица намного  уступает керамической черепице. Она имеет очень низкую шумоизоляцию, что при мансардной конструкции дома (а именно такая конструкция наиболее популярна в наше время, т.к. позволяет не терять ни метра полезного объема постройки) заставляет устраивать более мощную шумо- и одновременно теплоизоляцию. Ведь далеко не многим нравится засыпать под барабанный стук дождя по крыше или вой ветра. Теплопроводность металлочерепицы тоже высокая. Следовательно, хорошее утепление просто жизненно необходимо. Есть и еще одна особенность у этого материала, которую надо обязательно учитывать - это повышенное образование конденсата на нижней поверхности листов (точка росы располагается именно на этой поверхности). Образование конденсата вызывает, например перепад дневных и ночных температур. Конденсат при этом образуется в таких количествах, что его надо отводить наружу. А вот о том, что необходимо под слой металлочерепицы уложить гидроизоляционный слой и сами заказчики, и строители, как правило, не знают или забывают. То, что заказчик об этом не знает - это понятно, а вот строители просто обязаны об этом свойстве металлочерепицы знать и помнить. Монтаж дополнительного слоя гидроизоляции, конечно, вызовет дополнительные расходы (~$1на квадратный метр) и нести эти расходы никто не хочет, но зато помогает избежать многих неприятностей при эксплуатации.
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.