На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


реферат Топливный элемент как химический источник электроэнергии

Информация:

Тип работы: реферат. Добавлен: 27.09.2012. Сдан: 2011. Страниц: 6. Уникальность по antiplagiat.ru: < 30%

Описание (план):


Федеральное государственное  бюджетное образовательное  учреждение
высшего профессионального  образования 

СИБИРСКИЙ ГОСУДАРСТВЕННЫЙ  УНИВЕРСИТЕТ ПУТЕЙ  СООБЩЕНИЯ
(СГУПС) 

Дисциплина  «Химия»
Кафедра «Химия» 
 

Реферат 

Тема: Топливные элементы
как химические источники электроэнергии 
 

      Разработал  студент
Руководитель
Паули                     группы СП-112:  

Ирина Анатольевна               Гусева Ю. Е.             
(Ф.И.О., подпись) (Ф.И.О., подпись)
_______________________ _____________________
(дата проверки) (дата сдачи на проверку) 
 
 
 
 

Краткая рецензия:
____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 
 
 

_______________________  _____________________
(запись о допуске к защите) (оценка, подпись преподавателя) 
 

2011
Содержание
Введение……………………………………………………….стр. 3
1. Основные  сведения о топливных элементах……………..стр. 4
2. Принцип  действия топливного элемента…………………стр. 5
3. Классификация  топливных элементов………………........стр. 6
4. Другие  типы топливных элементов………………..……...стр. 9
5. История  и направления развития 
топливных элементов………………………………………..стр. 10
6. Применение топливных элементов………………..…….стр. 13
7. Преимущества  водородных топливных элементов…….стр. 13
Заключение……………………………………………………стр. 14
Список  литературы ………………………………………….стр. 16 
 

           
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

       Введение
       Промышленное  производство электроэнергии на различных  типах станций: водяных, тепловых, ветряных и других – основано на превращении разных видов энергии (кинетической, тепловой, механической) в электрическую. Технологически процедура базируется на непрерывности работы, многоступенчатости процессов и характеризуется относительно невысоким значением КПД – порядка 40-50%. Альтернативным способом получения электроэнергии являются химические источники тока, в которых химическая энергия реакции непосредственно преобразуется в электрическую. Они обладают рядом достоинств: характеризуются высоким значением КПД – около 80-90%, позволяют транспортировать электроэнергию в любое место, использовать её в любых порциях – больших и малых в непрерывном или дискретном режимах.
       Количество  производимых в настоящее время  разнообразных химических источников электроэнергии исчисляется несколькими  миллиардами. Примечательно, что если одновременно включить все имеющиеся в мире химические источники электроэнергии, то они развили бы мощность, сравнимую с мощностью всех электростанций планеты, около 109 кВт. Однако в отличие от непрерывно действующих электростанций химические источники электроэнергии работают непродолжительно во времени, и поэтому их общая энергия в сравнении с энергией электростанций все же не велика. Тем не менее химические источники электроэнергии привлекательны тем, что они легко приспособляемы к определенным условиям и могут работать автономно.
       В зависимости от эксплуатационных особенностей и от электрохимической системы (совокупности реагентов и электролита) химические источники тока делятся  на гальванические элементы (обычно называются просто элементами), которые, как правило, после израсходования реагентов (после разрядки) становятся неработоспособными, и аккумуляторы, в которых реагенты регенерируются при зарядке — пропускании тока от внешнего источника. Такое деление условно, т.к. некоторые элементы могут быть частично заряжены. К важным и перспективным химическим источникам тока относятся топливные элементы (электрохимические генераторы), способные длительно непрерывно работать за счёт постоянного подвода к электродам новых порций реагентов и отвода продуктов реакции. Конструкция резервных химических источников тока позволяет сохранять их в неактивном состоянии 10—15 лет.
     Топливные элементы осуществляют прямое превращение  энергии топлива в электричество  минуя малоэффективные, идущие с большими потерями, процессы горения. Это электрохимическое устройство в результате высокоэффективного «холодного» горения топлива непосредственно вырабатывает электроэнергию.
         Именно об этом виде химических источников электроэнергии и пойдет речь далее. 

       1. Основные сведения  о топливных элементах
       Топливный элемент (ТЭ) – это первичный (не перезаряжаемый) источник тока, в котором  электрическая энергия непосредственно  образуется за счет реакции между  топливом (восстановителем) и окислителем.
       В отличие от гальванических элементов реагенты в топливных элементах не совмещены с электродами, а хранятся отдельно и подводятся к ним по мере протекания химических реакций. Сами электроды в реакцию не вступают, но являются катализаторами этих реакций. Их функция - отбор электронов от восстановителя и передача их окислителю. Топливный элемент - это химический источник тока длительного пользования. Удельная энергия ТЭ значительно выше, чем у гальванических элементов. В топливных элементах используют жидкие или газообразные восстановители - водород, гидразин, метанол, углеводороды и окислители - кислород, пероксид водорода. В топливных элементах протекает реакция окисления топлива, в итоге образуются электроэнергия, продукты окисления топлива и теплота: 

       топливо + окислитель = электроэнергия + продукты окисления топлива + Q 

       Этот  процесс может быть представлен  в виде следующих стадий:
      анодное окисление топлива;
      катодное восстановление окислителя;
      движение ионов в растворе или расплаве электролита;
      движение электронов от анода к катоду во внешней цепи.
 
 
 
      2. Принцип действия  топливного элемента (ТЭ).
     Ископаемое  топливо (уголь, газ и нефть) состоит  в основном из углерода. При сжигании атомы топлива теряют электроны, а атомы кислорода воздуха  приобретают их. Так в процессе окисления атомы углерода и кислорода соединяются в продукты горения – молекулы углекислого газа. Этот процесс идет энергично: атомы и молекулы веществ, участвующих в горении, приобретают большие скорости, а это приводит к повышению их температуры. Они начинают испускать свет – появляется пламя.
     Химическая  реакция сжигания углерода имеет  вид:
C + O2 = CO2 + тепло
      В процессе горения химическая энергия  переходит в тепловую энергию  благодаря обмену электронами между  атомами топлива и окислителя. Этот обмен происходит хаотически.
     Горение – обмен электронов между атомами, а электрический ток – направленное движение электронов. Если в процессе химической реакции заставить электроны  совершать работу, то температура  процесса горения будет понижаться. В ТЭ электроны отбираются у реагирующих веществ на одном электроде, отдают свою энергию в виде электрического тока и присоединяются к реагирующим веществам на другом.
     Основа  любого химического источника тока – два электрода соединенные  электролитом. ТЭ состоит из анода, катода и электролита. На аноде окисляется, т.е. отдает электроны, восстановитель (топливо CO или H2), свободные электроны с анода поступают во внешнюю цепь, а положительные ионы удерживаются на границе анод-электролит (CO+, H+). С другого конца цепи электроны подходят к катоду, на котором идет реакция восстановления (присоединение электронов окислителем O2–). Затем ионы окислителя переносятся электролитом к катоду.
     В ТЭ вместе сведены вместе три фазы физико-химической системы:
      газ (топливо, окислитель);
      электролит (проводник ионов);
      металлический электрод (проводник электронов).
     В ТЭ происходит преобразование энергии  окислительно-восстановительной реакции  в электрическую, причем, процессы окисления  и восстановления пространственно  разделены электролитом. Электроды и электролит в реакции не участвуют, но в реальных конструкциях со временем загрязняются примесями топлива. Электрохимическое горение может идти при невысоких температурах и практически без потерь. На рис. показана ситуация, в которой в ТЭ поступает смесь газов (CO и H2), т.е. в нем можно сжигать газообразное топливо. Таким образом, ТЭ оказывается «всеядным». 

 

     Усложняет использование ТЭ то, что для них  топливо необходимо «готовить». Для  ТЭ получают водород путем конверсии  органического топлива или газификации угля. Поэтому структурная схема электростанции на ТЭ, кроме батарей ТЭ, преобразователя постоянного тока в переменный и вспомогательного оборудования включает блок получения водорода. 

      3. Классификация топливных  элементов
       В связи с большим разнообразием ТЭ пока нет их единой классификации. Можно классифицировать ТЭ по различным признакам: по принципу использования реагентов; по виду топлива и окислителя; по условиям работы ТЭ (температура и давление).
       По  принципу использования реагентов  ТЭ подразделяют на первичные и вторичные. В первичных элементах топливо и окислитель вводятся непосредственно в ТЭ и превращаются в продукты реакции, которые затем выводятся из ТЭ. Во вторичные ТЭ вводятся не исходные ТЭ, а продукты их переработки, например водород, полученный при конверсии метана. Ко вторичным ТЭ относятся и регенеративные. В регенеративных ТЭ продукты реакции подвергаются регенерации на восстановитель и окислитель, которые затем снова направляются в ТЭ.
       Название  элементы получают обычно по виду окислителя или восстановителя, например водородно-кислородные, воздушно-метанольные, перекисно-водородно-гидразиновые.
       По  рабочей температуре ТЭ классифицируются на низкотемпературные, среднетемпературные и высокотемпературные.
       Рабочая температура элемента выбирается в зависимости от свойств выбранного электролита. К электролиту предъявляют следующие требования: высокая ионная проводимость; отсутствие электронной проводимости; химическая стойкость; наличие водород- или кислородсодержащих ионов.
       В соответствии с этими требованиями принято следующее деление ТЭ по электролиту: элементы с кислотой, щелочью, расплавленными карбонатами и твердыми окислами.
       Наибольшее  распространение получили низкотемпературные (рабочая температура ниже 423 К) ТЭ с жидким электролитом. В качестве электролита используются концентрированные растворы кислот и щелочей. Топливом в низкотемпературных ТЭ обычно служит водород, окислителем – кислород или воздух.
       В щелочных электролитах, как правило, предпочитают применять гидроокись калия, а не натрия. Это вызвано меньшей эффективностью кислородных электродов в растворах NaOH по крайней мере при обычных условиях работы и более низкой удельной проводимости раствора NaOH. В кислых электролитах проблема коррозии металлов более острая, чем в щелочных электролитах. Имеется мало материалов, стойких к агрессивному действию этих кислот в сильной окислительной среде на кислородном электроде. Помимо газообразных реагентов в низкотемпературных ТЭ применяется жидкое топливо (гидразин, спирт) и окислитель (перекись водорода). Жидкий электролит находится в свободном состоянии либо пропитывает поры мелкопористого электролитоносителя, обычно изготовленного из асбеста. В этом случае электролит удерживается в неэлектропроводящей пористой матрице капиллярными силами. Основные требования к матрице: высокая пористость и малый размер пор, хорошая смачиваемость электролитом, достаточная механическая прочность, способность выдерживать соответствующие интервалы температур, высокое удельное электрическое сопротивление, химическая инертность по отношению к электролиту. Функции переноса ионов (ОН-, Н+) при работе низкотемпературного ТЭ могут быть осуществлены при помощи твердого электролита – ионообменных мембран. Применение электролитоносителей и ионообменных мембран позволяет существенно упростить конструкцию ТЭ и повысить их удельные массогабаритные характеристики. Однако в подобных системах возникают серьезные трудности, связанные с обеспечением материального баланса при длительной работе.
       В низкотемпературных ТЭ для активации электродов используют катализаторы и дефицитные материалы. При увеличении рабочих температур возможно значительное снижение необходимого количества катализатора, а также применение для активации менее дефицитных материалов.
       В низкотемпературных элементах не удается использовать природные вида топлива: нефть и продукты ее переработки, уголь и природный газ (метан) из-за высокой поляризации. Проблема использования этих видов топлива решается по двум направлениям: путем применения высокотемпературных элементов и путем предварительной химической обработки топлива с целью получения электрохимически активных веществ.
       Для развития современных представлений  о работе ТЭ большое значение имели исследования Ф. Бэкона в области среднетемпературных (423-523 К) водородно-кислородных –щелочных систем. Однако в настоящее время работы в этом направлении практически прекращены из-за сложных коррозионных и конструктивных проблем  и сравнительно низких удельных характеристик среднетемпературных ЭХГ. В то же время продолжаются интенсивные исследования среднетемпературных ТЭ с кислым электролитом (серная, фосфорная кислоты), поскольку в них отсутствует проблема карбонизации электролита и могут быть использованы конвертированные водород и кислород воздуха.
       Принципиальным  преимуществом высокотемпературных ТЭ (рабочая температура более 573 К) является возможность окисления в них с приемлемыми скоростями дешевого топлива (углеводородов, спиртов, аммиака и т. п.) и кислорода воздуха. В качестве электролита в таких ТЭ используются расплавы карбонатов, а также смесь окислов циркония, кальция и иттрия в твердом состоянии. К сожалению, эти системы пока не поддаются технической реализации из-за высоких скоростей коррозии, трудностей с подбором материалов для изготовления электродов, конструктивных узлов, созданием электролита со стабильными характеристиками, отсутствия способа соединения твердых деталей, испытывающих термическое расширение.
       Выбор топлива (восстановителя) и окислителя для ТЭ определяется типом и назначением  ТЭ и предъявляемыми к нему требованиями. ЭДС, удельная мощность и энергия  ТЭ возрастает с увеличением потенциала окислителя в сторону положительных значений и потенциала восстановителя в сторону отрицательных значений. Удельная энергия ТЭ возрастает с увеличением удельной емкости (количества энергии, высвобождаемой при электрохимическом превращении единицы массы вещества) окислителя и восстановителя. Удельная мощность ТЭ в значительной степени зависит от электрохимической активности восстановителя и окислителя, т. е. скоростей их электрохимического превращения на электродах. Целесообразность использования того или иного реагента в ТЭ также зависит от стоимости и доступности этого реагента.
       При разработке электродов для различных  типов ТЭ необходимо учитывать особенности их эксплуатации. Как уже отмечалось, электродные процессы при работе ТЭ включают: диффузию реагирующих частиц к месту реакции; адсорбцию реагирующих частиц; электронный переход; промежуточные химические реакции; отвод продуктов реакции. Помимо обеспечения эффективного протекания всех упомянутых стадий электрод должен быть стабильным при длительной работе и хранении, обладать механическими свойствами, позволяющими использовать его в соответствующей конструкции. 

      4. Другие типы топливных  элементов
       Могут быть использованы и твердые электролиты  – вещества, обладающие ионной проводимостью, имеющие ионное строение. Перемещение ионов в них происходит из-за имеющихся в кристалле участков с минимумом потенциальной энергии (потенциальных ям), куда могут попадать колеблющиеся около своих положений равновесия ионы. В освободившийся узел кристаллической решетки (дефект) может перейти другой ион, соответственно ион передвинется на его место. С ростом температуры вероятность перехода ионов и дефектов в кристаллической решетке растет. При наложении электрического поля хаотическое движение ионов и дефектов принимает направленный характер: ионы и дефекты движутся в разных направлениях.
       Электролиты в таких ТЭ обладают приемлемой электрической  проводимостью лишь при 1200 К и выше, поэтому ТЭ с твердыми электролитами работают обычно при 1200-1300 К. В высокотемпературном ТЭ в качестве горючего может применяться не только водород, но и углеводороды, например метан или пропан. 

       5. История и направления  развития топливных  элементов
     Существуют  две сферы применения ТЭ: автономная и большая энергетика.
     Для автономного использования основными  являются удельные характеристики и  удобство эксплуатации. Стоимость вырабатываемой энергии не является основным показателем.
     Для большой энергетики решающим фактором является экономичность. Кроме того, установки должны быть долговечными, не содержать дорогих материалов и использовать природное топливо при минимальных затратах на подготовку.
     Наибольшие  выгоды сулит использование ТЭ в  автомобиле. Здесь, как нигде, скажется компактность ТЭ. При непосредственном получении электроэнергии из топлива  экономия последнего составит порядка 50%.
     Впервые идея использования ТЭ в большой энергетике была сформулирована немецким ученым В. Освальдом в 1894 году. Позднее получила развитие идея создания эффективных источников автономной энергии на основе топливного элемента.
     После этого предпринимались неоднократные попытки использовать уголь в качестве активного вещества в ТЭ. В 30-е годы немецкий исследователь Э. Бауэр создал лабораторный прототип ТЭ с твердым электролитом для прямого анодного окисления угля. В это же время исследовались кислородно-водородные ТЭ.
     В 1958 году в Англии Ф. Бэкон создал первую кислородно-водородную установку  мощностью 5кВт. Но она была громоздкой из-за использования высокого давления газов (2...4МПа).
     С 1955 года в США К. Кордеш разрабатывал низкотемпературные кислородно-водородные ТЭ. В них использовались угольные электроды с платиновыми катализаторами. В Германии Э. Юст работал над созданием неплатиновых катализаторов.
     После 1960 года были созданы демонстрационные и рекламные образцы. Первое практическое применение ТЭ нашли на космических кораблях «Аполлон». Они были основными энергоустановками для питания бортовой аппаратуры и обеспечивали космонавтов водой и теплом.
     Основными областями использования автономных установок с ТЭ были военные и  военно-морские применения. В конце 60-х годов объем исследований по ТЭ сократился, а после 80-х вновь возрос применительно к большой энергетике.
     Фирмой VARTA разработаны ТЭ с использованием двухсторонних газодифузионных  электродов. Электроды такого типа называют «Янус». Фирма Siemens разработала электроды с удельной мощностью до 90Вт/кг. В США работы по кислородно-водородным элементам проводит United Technology Corp.
     В большой энергетике очень перспективно применение ТЭ для крупномасштабного  накопления энергии, например, получение  водорода. Возобновляемые источники энергии (солнце и ветер) отличаются рассредоточеностью. Их серьезное использование, без которого в будущем не обойтись, немыслимо без емких аккумуляторов, запасающих энергию в той или иной форме.
     Проблема  накопления актуальна уже сегодня: суточные и недельные колебания нагрузки энергосистем заметно снижают их эффективность и требуют так называемых маневренных мощностей. Один из вариантов электрохимического накопителя энергии – топливный элемент в сочетании с электролизерами и газгольдерами*.
     * Газгольдер [газ + англ. holder держатель]  – хранилище для больших количеств  газа.
     Первое  поколение ТЭ.
     Наибольшего технологического совершенства достигли среднетемпературные ТЭ первого  поколения, работающие при температуре 200-230°С на жидком топливе, природном газе либо на техническом водороде. Электролитом в них служит фосфорная кислота, которая заполняет пористую углеродную матрицу. Электроды выполнены из углерода, а катализатором является платина (платина используется в количествах порядка нескольких граммов на киловатт мощности).
     * Технический водород – продукт  конверсии органического топлива,  содержащий незначительные примеси  окиси углерода.
     Одна  таких электростанций введена в  строй в штате Калифорния 1991 году. Она состоит из восемнадцати батарей массой по 18 т каждая и размещается в корпусе диаметром чуть более 2м и высотой около 5м. Продумана процедура замены батареи с помощью рамной конструкции движущейся по рельсам.
     Две электростанции на ТЭ США поставили  в Японию. Первая из них была пущена еще в начале 1983 года. Эксплуатационные показатели станции соответствовали расчетным. Она работала с нагрузкой от 25 до 80% от номинальной. КПД достигал 30-37% – это близко к современным крупным ТЭС. Время ее пуска из холодного состояния – от 4ч до 10мин., а продолжительность изменения мощности от нулевой до полной составляет всего 15с.
     Сейчас  в разных районах США испытываются небольшие теплофикационные установки  мощностью по 40кВт с коэффициентом  использования топлива около 80%. Они могут нагревать воду до 130°С и размещаются в прачечных, спортивных комплексах, на пунктах связи и т.д. Около сотни установок уже проработали в общей сложности сотни тысяч часов. Экологическая чистота электростанций на ТЭ позволяет размещать их непосредственно в городах.
     Первая  топливная электростанция в Нью-Йорке, мощностью 4,5МВт, заняла территорию в 1,3га. Теперь для новых станций с мощностью в два с половиной раза большей нужна площадка размером 30x60м. Строятся несколько демонстрационных электростанций мощностью по 11МВт. Поражают сроки строительства (7 месяцев) и площадь (30х60м), занимаемая электростанцией. Расчетный срок службы новых электростанций – 30 лет.
     Второе  и третье поколение ТЭ.
     Лучшими характеристиками обладают уже проектирующиеся  модульные установки мощностью 5 МВт со среднетемпературными топливными элементами второго поколения. Они работают при температурах 650...700°С.Их аноды делают из спеченных частиц никеля и хрома, катоды – из спеченного и окисленного алюминия, а электролитом служит расплав смеси карбонатов лития и калия. Повышенная температура помогает решить две крупные электрохимические проблемы:
      снизить «отравляемость» катализатора окисью углерода;
      повысить эффективность процесса восстановления окислителя на катоде.
     Еще эффективнее будут высокотемпературные топливные элементы третьего поколения с электролитом из твердых оксидов (в основном двуокиси циркония). Их рабочая температура – до 1000°С.КПД энергоустановок с такими ТЭ близок к 50%. Здесь в качестве топлива пригодны и продукты газификации твердого угля со значительным содержанием окиси углерода. Не менее важно, что сбросовое тепло высокотемпературных установок можно использовать для производства пара, приводящего в движение турбины электрогенераторов.
     Фирма Vestingaus занимается топливными элементами на твердых оксидах с 1958 года. Она разрабатывает энергоустановки мощностью 25-200кВт, в которых можно использовать газообразное топливо из угля. Готовятся к испытаниям экспериментальные установки мощностью в несколько мегаватт. Другая американская фирма Engelgurd проектирует топливные элементы мощностью 50кВт работающие на метаноле с фосфорной кислотой в качестве электролита.
     В создание ТЭ включается все больше фирм во всем мире. Американская United Technology и японская Toshiba образовали корпорацию International Fuel Cells. В Европе топливными элементами занимаются бельгийско-нидерландский консорциум Elenko, западногерманская фирма Siemens, итальянская Fiat, английская Jonson Metju. 

     6. Применение топливных  элементов.
     Стационарные  приложения
      производство электрической энергии (на электрических станциях),
      аварийные источники энергии,
      автономное электроснабжение.
 
     Транспорт
      автомобильные топливные элементы Honda,
      электромобили, автотранспорт,
      морской транспорт,
      железнодорожный транспорт, горная и шахтная техника,
      вспомогательный транспорт (складские погрузчики, аэродромная техника и т. д.).
     Бортовое  питание
      авиация, космос,
      подводные лодки, морской транспорт.
 
     Мобильные устройства
      портативная электроника,
      питание сотовых телефонов,
      зарядные устройства для армии,
      роботы.
 
 
       7. Преимущества водородных  топливных элементов.
       Топливные элементы обладают рядом ценных качеств, среди которых:
       Высокий КПД
       У топливных элементов нет жёсткого ограничения на КПД, как у тепловых машин (КПД цикла Карно является максимально возможным КПД среди всех тепловых машин с такими же минимальной и максимальной температурами).
       Высокий КПД достигается благодаря прямому  превращению энергии топлива  в электроэнергию. Если в дизель-генераторных установках топливо сначала сжигается, полученный пар или газ вращает турбину или вал двигателя внутреннего сгорания, которые в свою очередь вращают электрический генератор. Результатом становится КПД максимум в 42 %, чаще же составляет порядка 35-38 %. Более того, из-за множества звеньев, а также из-за термодинамических ограничений по максимальному КПД тепловых машин, существующий КПД вряд ли удастся поднять выше. У существующих топливных элементов КПД составляет 60-80 %[8],
       КПД почти не зависит от коэффициента загрузки. 

       Экологичность
       В воздух выделяется лишь водяной пар, что является безвредным для окружающей среды. Но это лишь в локальном масштабе. Нужно учитывать экологичность в тех местах, где производятся данные топливные ячейки, так как производство их само по себе уже составляет некую угрозу (ведь производство не может быть безвредным).
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.