На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


методичка Томография как направление в области получения и обработки информации, ее сущность и основная проблема. Хронология развития вычислительной томографии. Реконструкция томографических изображений при аппроксимации проекций ортогональными полиномами.

Информация:

Тип работы: методичка. Предмет: Математика. Добавлен: 02.03.2010. Сдан: 2010. Уникальность по antiplagiat.ru: --.

Описание (план):


1
ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ
Федеральное образовательное учреждение
высшего профессионального образования
«ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»
Д.Н. Карпинский
МЕТОДИЧЕСКИЕ УКАЗАНИЯ
к разделу «Традиционные методы вычислительной томографии» спецкурса «Применение томографических методов в медицинской диагностике»
для студентов специальности «Прикладная математика»
Ростов-на-Дону
2007
Печатается по решению кафедры теории упругости факультета математики, механики и компьютерных наук ЮФУ, протокол N1 от 10 сентября 2007 года.
Методические указания разработаны доктором физико-математических наук, профессором кафедры теории упругости Д.Н.Карпинским.
1. ВВЕДЕНИЕ

Томография - одно из бурно развивающихся направлений в области получения и обработки информации. Томография позволяет заглянуть внутрь наблюдаемого объекта. Основная проблема томографии - как по получаемым в томографическом эксперименте проекционным данным (например, по рентгеновским снимкам) "увидеть" внутреннюю структуру анализируемого объекта. Область математики, в которой разрабатываются методы решения подобных задач, известна как "интегральная геометрия" [1].
Хронология развития вычислительной томографии:
1895 г. - открытие рентгеновских лучей;
1917 г. - преобразование Радона;
1920 г. - рентгенограмма в медицине;
1930 г. - линейная томография, вращательная томография;
1942 г. - РВТ в радиоастрономии;
1961 г. - сверточный алгоритм;
1964 г. - алгоритм РВТ А. Кормака;
1972 г. - серийный томограф Г. Хаунсфилда;
1977 г. - учебный курс по вычислительной томографии в университете штата Нью-Йорк;
1979 г. - Нобелевская премия А. Кормаку и Г. Хаунсфилду.
1.2 В настоящее время существуют следующие виды томографии:
1) рентгеновская томография;
2) радионуклеидная томография;
3) ЯМР - томография;
4) ультразвуковая томография;
5) оптическая томография;
6) протонно-ионная томография;
7) томография в радиодиапазоне;
8) ЭПР - томография.
Особенно важное значение методы томографии имеют для медицинской диагностики [2].
Все виды томографии по свойствам изучаемых объектов можно разделить на два больших класса: трансмиссионную вычислительную томографию (ТВТ) и эмиссионную вычислительную томографию (ЭВТ). В ТВТ внешнее излучение зондирует пассивный (неизлучающий) объект, частично поглощаясь им. В ЭВТ активный (излучающий) объект представляет собой пространственное распределение источников излучения, при этом выходящее вдоль какого-либо направления излучение является суперпозицией излучений всех источников, лежащих на линии проецирования.
Рассмотрим вначале физический закон распространения внешнего излучения в веществе. Пусть тонкий пучок, например - излучения, с интенсивностью падает на слой вещества с распределением линейного коэффициента поглощения (ослабления) вдоль распространения пучка. При этом феноменологически определяют через вероятность поглощения - кванта при прохождении элементарного пути соотношением .
Рисунок 1. К выводу уравнения переноса излучения (1.1).
Стационарное уравнение переноса излучения в чисто поглощающей неоднородной среде, описывающее процесс излучения в веществе, представляет собой баланс частиц или энергии и имеет вид
(1.1)
Решением уравнения (2.1) будет закон Бугера-Ламберта-Бэра для неоднородной поглощающей среды, который составляет основу расчетов ТВТ.
, (1.2)
где - интенсивность источника излучения.
Рассмотрим теперь закон распространения излучения при действии внутренних источников излучения (самоизлучающие объекты).
Рисунок 2. К выводу закона переноса излучения при действии внутреннего источника.
Пусть точечный источник излучает в телесный угол с интенсивностью в веществе с распределением линейного коэффициента ослабления вдоль прямой, соединяющей источник с небольшой площадкой , наклоненной под углом к этой прямой. Тогда для интенсивности , приходящейся на площадку , получаем [3]
. (1.3)
Выражение (1.3) учитывает четыре основных фактора: пространственное распределение источника излучения, геометрическое ослабление, ослабление излучения в веществе и наклон площадки детектора. Формула (1.3) лежит в основе ЭВТ.
2. ПРЕОБРАЗОВАНИЕ РАДОНА

2.1 Рассмотрим задачу восстановления двумерного распределения коэффициента ослабления при просвечивании объекта излучением внешнего источника. Источник излучения проходит дискретно вдоль объекта. Синхронно с источником с другой стороны объекта движется детектор излучения. Набор отсчетов, полученный таким образом, определяет одномерную функцию, называемую проекцией. Затем система «Источник-детектор» поворачивается относительно объекта на некоторый угол , и снимает новый набор отсчетов, определяющий следующую проекцию. По полученному набору одномерных проекций необходимо восстановить двумерное распределение . Такую схему измерений называют круговой геометрией измерений, а проекции называют параллельными проекциями.

Рисунок 3. Схема кругового сканирования с параллельными проекциями.
Пусть на плоскости, где введена прямоугольная система координат задана функция . Проинтегрируем эту функцию по некоторой прямой, лежащей в данной плоскости. Очевидно, что результат интегрирования, который обозначим , зависит от того, по какой именно прямой проводится интегрирование.
Рисунок 4. К выводу формул преобразования Радона.
Известно, что всякая прямая может быть описана уравнением
, (2.1)
где - расстояние от начала координат до этой прямой; - угол, образованный с осью перпендикуляром, опущенным из начала координат на эту прямую.
Произвольная прямая однозначно задается двумя параметрами и . Поэтому и результат интегрирования функции по некоторой прямой будет зависеть от этих же параметров, т.е. . Предположим, что функция интегрируется по всевозможным прямым. Подобное интегрирование можно также рассматривать как некоторое преобразование, которое данной функции на плоскости ставит в соответствие функцию на множестве всех прямых, задаваемую интегралами от вдоль прямых. Это преобразование называют преобразованием Радона [4,5], а функцию часто называют образом функции в пространстве Радона или проекцией, которая в обозначениях (1.2) имеет вид
. (2.2)
Задача ставится следующим образом: функция неизвестна, но известна функция , являющаяся образом в пространстве Радона; требуется по функции определить . Другими словами решение поставленной задачи сводится к отысканию явной формулы обращения или к поиску преобразования, обратного преобразованию Радона. Впервые формула обращения была получена в статье Иоганна Радона, опубликованной в 1917 году в Трудах Саксонской академии наук. Однако эта работа была незаслуженно забыта и формула обращения была открыта заново в 1961 году.
Согласно определению радоновского образа и с учетом того, что интеграл от заданной функции вдоль прямой равен интегралу по всей плоскости произведения этой функции на - функцию, аргументом которой является левая часть уравнения (2.3), имеем [6,7]
. (2.3)
Интегрирование, осуществляемое по двум переменным, можно свести к интегрированию по одной переменной. Для этого введем еще одну прямоугольную систему координат , повернутую относительно на угол . Вспомним, что при переходе от одной из этих систем координат к другой координаты меняются следующим образом:
(2.4)
(2.5)
Сделаем в (2.3) замену переменных (2.4)
=
= (2.6)
Для функции , отличной от нуля в пределах некоторой ограниченной области, ее радоновский образ также определяется выражением (2.3), только интегрирование проводится не по всей плоскости, а задается границами данной области. Так, если отлична от нуля внутри круга радиуса , то вместо (2.6) имеем
. (2.7)
В общем случае функция, описывающая радоновский образ, обладает одним важным свойством
. (2.8)
Физический смысл этого свойства состоит в том, что любые пары и согласно (2.1) задают одну и ту же прямую.
Приведем примеры, которые иллюстрируют вычисление радоновских образов.
Пример 1.
Пусть . Подставим это выражение в (2.6) и получим (см. Приложение А)
=
=. (2.9)
Из (2.9) следует, что если функция отлична от нуля в точке , то функция, описывающая ее образ в пространстве Радона , отлична от нуля на линии
, (2.10)
где .
Рисунок 5. - функция (а) и ее радоновский образ (б)
Пример 2.
Пусть . Подставляя это выражение в (2.6), получим
. (2.11)
Рисунок 6. Функция (а) и ее радоновский образ (б)
Область, где принимает максимальные значения, представляет собой линию, которая определяется выражением (2.10).
Пример 3.
При (2.12)
получаем
(2.13)
Рисунок 7. Функция (а) и ее радоновский образ (б)
2.2 В случае самоизлучающего объекта основной задачей ЭВТ является задача восстановления двумерного распределения источников излучения . Для простоты будем считать, что область, в которой распределены источники излучения, целиком расположена в области поглощения излучения, характеризующейся функцией распределения коэффициента ослабления . Обычно при измерениях с помощью ЭВТ, также как и при ТВТ, используют круговую схему с параллельными проекциями.
Рисунок 8. Круговая геометрия измерений в ЭВТ.
В [3] показано, что для ЭВТ с постоянным коэффициентом ослабления экспоненциальное преобразование Радона в декартовых координатах имеет вид
, (2.14)
а в полярных координатах
. (2.15)
Выражение (2.15) можно переписать в другом виде
. (2.16)
2.3 Выражения (2.3), (2.6) позволяет по функции найти ее радоновский образ . Существует соотношение, определяющее аналогичную связь между преобразованием Фурье этих функций. Пусть - одномерное преобразование Фурье функции по переменной , а - двумерное преобразование Фурье функции по переменным . Согласно определению
, (2.17)
. (2.18)
В трехмерном пространстве введем прямоугольную систему координат, у которой по одной оси отложены значения , а по двум другим - значения и .
Рисунок 9. Центральное сечение двумерного преобразования Фурье
Проведем плоскость, перпендикулярную плоскости и проходящую через начало координат, такую, что линия ее пересечения с плоскостью составляет с осью угол, равный (центральное сечение двумерного преобразования Фурье). В сечении этой плоскости со значениями функции получается некоторая одномерная функция, зависящая от положения точки на этой прямой, например от ее расстояния до начала координат. Если это расстояние равно , координаты точки этой прямой в плоскости равны и . Следовательно, подстановкой , превращается в .
Теорема.
Пусть функция и ее радоновский образ таковы, что существуют их преобразования Фурье. Тогда одномерное преобразование Фурье радоновского образа по переменной равно функции, описывающей центральное сечение двумерного преобразования Фурье, соответствующее тому значению , при котором вычисляется преобразование Фурье функции
. (2.19)
Для доказательства (2.19) подставим в (2.17) вместо выражение (2.6) и сделаем замену переменных, аналогичную (2.4), полагая в (2.4) . Тогда получаем
=
. (2.20)
Сравнивая последний интеграл в (2.20) с (2.18), видим, что они равны, если в (2.20) под и понимать соответственно и . Следовательно, последний интеграл в (2.20) равен , что и доказывает сформулированную теорему. Легко убедиться, что теорема о центральном сечении справедлива и для случая, когда верно равенство (2.7).
2.4 Рассмотрим теперь формулы обращения и алгоритмы реконструкции, основанные на теореме о центральном сечении. Известно, что по двумерному преобразованию Фурье можно найти :
. (2.21)
Сделаем в (2.21) замену переменных, перейдя в плоскости к полярным координатам , так что , . Тогда (2.21) принимает вид:
. (2.22)
Теперь воспользуемся равенством (2.19) и вместо подставим в (2.22) функцию , после чего получим
(2.23)
Равенство (2.23) и является искомой формулой обращения, позволяющей с учетом (2.17) по найти функцию . Однако привлечение этого равенства для обработки данных томографических экспериментов оказывается не очень удобным из-за используемой в нем области интегрирования. Принимая во внимание равенство
, (2.24)
получим окончательное выражение для обращения преобразования Радона (см. Приложение Б)
. (2.25)
Для выявления детальной структуры алгоритма восстановления перепишем
(2.25) в несколько ином виде. Обозначим
(2.26)
и введем функцию от и равную
. (2.27)
Тогда (2.25) принимает вид
, (2.28)
где при вычислении интеграла по величина должна быть заменена в соответствии с (2.26) на . В целом, алгоритм обращения преобразования Радона можно интерпретировать как последовательность операций:
1) для данного радоновского образа определяется его преобразование Фурье ;
2) функция умножается на ;
3) вычисляется обратное преобразование Фурье произведения и тем самым определяется функция ;
4) аргументу функции присваивается значение (2.26);
5) пров и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.