На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


реферат Показатели транспортного потока. Диаграмма транспортного потока

Информация:

Тип работы: реферат. Добавлен: 27.09.2012. Сдан: 2012. Страниц: 9. Уникальность по antiplagiat.ru: < 30%

Описание (план):


?2
 
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
Федеральное агентство по образованию Курганский Государственный
Университет
 
 
 
Кафедра «Автомобильный транспорт и автосервис»
 
 
 
 
 
 
 
ОРГАНИЗАЦИЯ ДВИЖЕНИЯ
 
 
РЕФЕРАТ НА ТЕМУ: «Показатели транспортного потока. Диаграмма транспортного потока».
 
 
 
 
 
 
 
 
 
 
  Выполнила студентка гр.  ТСЗ-468
                                                      Специальность 190702
                                                       Шифр
                                                 Е. Ирина Михайловна
                                                       Преподаватель:.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Курган 2009 г.

Показатели транспортного потока.

При формировании информации о состоянии дорожного движе­ния в первую очередь необходимы данные, характеризующие транс­портный поток.
Многолетний зарубежный и отечественный опыт научных иссле­дований и практических наблюдений за транспортными потоками по­зволил выделить наиболее объективные показатели. По мере совершен­ствования методов и аппаратуры для исследования транспортных по­токов номенклатура показателей, используемых в организации дорож­ного движения, продолжает развиваться. Наиболее часто применяемы­ми являются: интенсивность транспортного потока, его состав по ти­пам транспортных средств, плотность потока, скорость движения, за­держки движения. Охарактеризуем эти и другие показатели транспорт­ного потока.
Интенсивность транспортного потока (интенсивность движения) Na – это число транспортных средств, проезжающих через сечение до­роги за единицу времени. В качестве расчетного периода времени для определения интенсивности движения принимают год, месяц, сутки, час и более короткие промежутки времени (минуты, секунды) в зави­симости от поставленной задачи наблюдения и средств измерения.
На УДС можно выделить отдельные участки и зоны, где движение достигает максимальных размеров, в то время как на других участках оно в несколько раз меньше. Такая пространственная неравномерность отражает прежде всего неравномерность размещения грузо- и пассажирообразующих пунктов и мест их притяжения. На рис. 2.1 показан пример картограммы, характеризующей интенсивность транспортных потоков (в автомобилях в час) на магистральных улицах города.
Неравномерность транспортных потоков во времени (в течение года, месяца, суток и даже часа) имеет важнейшее значение в проблеме орга­низации движения (рис. 2.2, 2.3). Типичная кривая распределения ин­тенсивности движения в течение суток на городской магистрали пока­зана на рис. 2.2. Примерно такая же картина наблюдается и на автомо­бильных дорогах. Кривые на рис. 2.2 позволяют выделить так называе­мые "часы пик", в которые возникают наиболее сложные задачи орга­низации и регулирования движения.
Термин "час пик" является условным и объясняется лишь тем, что час является основной единицей измерения времени. Продолжительность наибольшей интенсивности движения может быть больше или меньше часа. Поэтому наиболее точным будет понятие пико­вый период, под которым подразумевают время, в течение которо­го интенсивность, измеренная по малым отрезкам времени (напри­мер, по 15-минутным наблюдениям), превышает среднюю интен­сивность периода наиболее оживленного движения. Периодом наи­более оживленного движения на большинстве городских и внего­родских дорог обычно является 16-часовой отрезок времени в те­чение суток (примерно с 6 до 22 ч). В условиях перенасыщения УДС транспортным потоком на ряде ма­гистралей Москвы и других крупных городов в течение практически всего активного периода суток наблюдается "пиковая" интенсив­ность (линия 3 на рис. 2.2), сопровождающаяся заторовыми явлениями.
Временная неравномерность транспортных потоков может быть охарактеризована соответствующим коэффициентом неравномернос­ти Кн. Этот коэффициент может быть вычислен для годовой, суточной и часовой неравномерностей движения. Неравномерность может быть выражена как доля интенсивности движения, приходящейся на дан­ный отрезок времени, либо как отношение наблюдаемой интенсивно­сти к средней за одинаковые промежутки времени.
 

Рис. 2.1. Картограмма среднесуточной интенсивности транспортных потоков в городе Рис.

Коэффициент годовой неравномерности
,
где 12 – число месяцев в году; Nам – интенсивность движения за срав­ниваемый месяц, авт/мес; Naг – суммарная интенсивность движения за год, авт/г.

2.2. Изменение интенсивнос­ти в течение суток на городской магистрали радиального направле­ния:
1 – движение из центра; 2 – дви­жение к центру; 3 – движение в условиях перенасыщения транс­портным потоком

Рис. 2.3. Примерное изменение ин­тенсивности транспортного потока в течение года:
1 – на дороге федерального зна­чения; 2 – на дороге областного значения

Коэффициент суточной неравномерности
,
где 24 – число часов в сутках; Nач – интенсивность движения за сравнивае­мый час, авт/ч; Nас – суммарная интенсивность движения за сутки, авт/сут.
Необходимо отметить, что в публикациях по дорожному движению применяют понятие объем движения в отличие от интенсивности дви­жения. Под объемом движения понимают фактическое число автомо­билей, проехавших по дороге в течение принятой единицы времени, полученное непрерывным наблюдением за обозначенный период.
Для характеристики пространственной неравномерности транс­портного или пешеходного потока могут быть также определены соот­ветствующие коэффициенты неравномерности по отдельным улицам и участкам дорог аналогично временной неравномерности.
Наиболее часто интенсивность движения транспортных средств и пешеходов в практике организации движения характеризуют их часо­выми значениями. При этом наиболее важен этот показатель в пико­вые периоды. Необходимо, однако, иметь в виду, что интенсивность движения в "часы пик" в различные дни недели может иметь неодина­ковые значения.
На дорогах с более высоким уровнем интенсивности движения транспортных средств меньше неравномерность движения и стабиль­нее интенсивность в пиковые периоды.
Для двухполосных дорог с встречным движением общую интенсив­ность характеризуют обычно суммарным значением встречных пото­ков, так как условия движения и, в частности, возможность обгонов определяются загрузкой обеих полос. Если же дорога имеет раздели­тельную полосу и встречные потоки изолированы друг от друга, то сум­марная интенсивность встречных направлений не определяет условия движения, а характеризует лишь суммарную работу дороги как соору­жения. Для таких дорог интенсивность движения в каждом направле­нии имеет самостоятельное значение.
Во многих случаях, особенно при решении вопросов регулирова­ния движения в городских условиях, важна не только суммарная ин­тенсивность потока по данному направлению, но также интенсивность, приходящаяся на одну полосу, или так называемая удельная интенсив­ность движения Ма. Если известно конкретное распределение интен­сивности движения по полосам и оно существенно неравномерно, то в качестве расчетной интенсивности Ма можно принять интенсивность движения по наиболее загруженной полосе.
Временной интервал ti между следующими друг за другом по одной полосе транспортными средствами является показателем, обратным ин­тенсивности движения. Математическое ожидание E(ti) определяется зависимостью E(ti) = 3600/Mа. Если интервал ti между следующими друг за другом по полосе автомобилями более 10 с, то их взаимное влияние является относительно слабым и условия движения характеризуются как "свободные". Более детально стохастический процесс распределе­ния автомобилей в транспортном потоке и временных интервалов между ними рассмотрен в подразделе 2.4.
Состав транспортного потока характеризуется соотношением в нем транспортных средств различного типа. Этот показатель оказывает зна­чительное влияние на все параметры дорожного движения. Вместе с тем состав транспортного потока в значительной степени отражает об­щий состав парка автомобилей в данном регионе. Так, на дорогах США и многих западных стран преобладают легковые автомобили, которые составляют 80 – 90% общей численности парка. По мере роста автомо­билизации и увеличения доли легковых автомобилей в парке нашей страны она будет увеличиваться и в транспортном потоке. Во многих случаях эта доля достигает уже 70 – 90%.
Состав транспортного потока влияет на загрузку дорог (стеснен­ность движения), что объясняется прежде всего существенной разни­цей в габаритных размерах автомобилей. Если длина легковых автомо­билей 4 – 5 м, грузовых      6 – 8 м, то длина автобусов достигает 11 м, а ав­топоездов 24 м. Сочлененный автобус (троллейбус) имеет длину 16,5 м. Однако разница в габаритных размерах не является единственной при­чиной необходимости специального учета состава потока при анализе интенсивности движения.
При движении в транспортном потоке важна разница не только в статическом, но и в динамическом габарите автомобиля, который зави­сит в основном от времени реакции водителя и тормозных качеств транспортных средств. Под динамическим габаритом Lд (рис. 2.4) под­разумевается участок дороги, минимально необходимый для безопас­ного движения в транспортном потоке с заданной скоростью автомо­биля, длина которого включает длину автомобиля lа и дистанцию d, называемую дистанцией безопасности.
Существуют три принципиально отличающихся подхода к расчет­ному определению Lд, предлагаемых различными авторами (см. под­раздел 2.4).

Рис. 2.4. Динамический габарит автомобиля в плотном транспортном потоке

Таблица 2.1
Тип транспортного средства и его характеристика
Установившееся замедление, м/с2, не менее
Длина тормозного пути, м, не более*
Легковые автомобили, предназначенные для перевозки людей в количестве не более 8 чел. (кроме водителя), а также созданные на их базе модификации (пикапы, универ­салы и т. п.) – категория М1
Грузовые автомобили с разрешенной мак­симальной массой до 3,5 т – категория N1
Грузовые автомобили с разрешенной мак­симальной массой более 12 т – категория N3
Грузовые автопоезда с тягачом – катего­рия N1
6,8
 
 
5,7
6,2
4,6
12,2
 
 
15,1
16,0
17,7
* При торможении с начальной скорости 40 км/ч для транспортных средств в снаряженном состоянии
 
Тормозные качества автомобилей различных типов в эксплуатации существенно отличаются. Эта разница подтверждается требованиями к эффективности торможения (табл. 2.1), установленными ГОСТ 25478–91 «Автотранспортные средства. Требования к техническому состоянию по условиям безопасности движения. Методы проверки».
В табл. 2.2 приведена полная классификация автотранспортных средств, установленная КВТ ЕЭК ООН.
Фактический динамический габарит автомобиля зависит также от обзорности, легкости управления, маневренности автомобиля, кото­рые влияют на дистанцию, избираемую водителем. При этом следует обратить внимание на следующее обстоятельство. При колонном дви­жении легковых автомобилей каждый водитель, благодаря большой поверхности остекления, а также небольшим габаритам впереди иду­щих автомобилей, может достаточно хорошо видеть и прогнозировать обстановку впереди нескольких автомобилей. В то же время, если пе­ред легковым автомобилем движется грузовой автомобиль или автобус, то водитель легкового автомобиля лишен возможности оценивать и прогнозировать обстановку впереди, и его действия по управлению ста­новятся менее уверенными. В этом случае из-за невозможности доста­точного прогнозирования обстановки впереди резко возрастает опас­ность при обгоне, а также в случае экстренной остановки автомобилей, движущихся в плотной колонне.
При обследованиях транспортных потоков большой интенсивнос­ти определенную трудность представляет задача точного определения грузоподъемности каждого грузового автомобиля. Поэтому можно при­бегнуть к упрощенному методу учета этой категории транспортных средств и принять для всех грузовых автомобилей грузоподъемностью 2 – 8 т обобщенный коэффициент 2.
При описании характеристик транспортного потока, как в пись­менной форме, так и в виде графиков, следует обратить внимание на необходимость указывать соответствующую размерность в физических единицах (авт/ч) или в приведенных (ед/ч).
Таблица 2.2
Категория ТС
Тип ТС
Разрешенная максимальная
масса, т
Примечание
М1
ТС с двигателем, предназначенные для перевозки пассажиров и имеющие не более 8 мест для сидения (кроме места водителя)
Не нормируется
Легковые автомобили
М2
То же, имеющие более 8
мест для сидения (кроме места
водителя)
До 5,0
Автобусы
М3
То же
Свыше 5,0
Автобусы, в том числе сочлененные
N1
ТС с двигателем, предназначенные для перевозки грузов
До 3,5
Грузовые автомобили, специальные автомобили
N2
То же
Свыше 3,5 до 12,0
Грузовые автомобили, автомобили-тягачи, специальные автомобили
N3
"
Свыше 12,0
То же
О1
ТС без двигателя
До 0,75
Прицепы одноосные
О2
То же
Свыше 0,75 до 3,5
Прицепы и полуприцепы, за исключением категории О1
О3
"
" 3,5 до 10,0
То же
О4
"
" 10,0
"
Для решения практических задач ОДД могут быть использованы ре­комендации по выбору значений Кпр, содержащиеся в отечественных нормативных документах:
Легковые автомобили
1
Мотоциклы
с коляской
0,75
одиночные
0,5
Грузовые автомобили грузоподъемностью, т
до 2 включительно
1,5
Свыше 2 до 5
1,7
“ 5 до 8
2,0
“ 8 до 14
3,0
Автобусы
2,5
Троллейбусы
3,0
Сочлененные автобусы и троллейбусы
4,0
Микроавтобусы
1,5
Автопоезда грузоподъем­ностью, т:
до 12 включительно
3,5
свыше 12 до 20
4,0
" 20 до 30
5,0
" 30
6,0
С помощью коэффициентов приведения можно получить показатель интенсивности движения в условных приведенных единицах, ед/ч
,
где Ni – интенсивность движения автомобилей данного типа; Knpi – соответ­ствующие коэффициенты приведения для данной группы автомобилей; n – число типов автомобилей, на которые разделены данные наблюдений.
Исследования показывают, что используемые коэффициенты при­ведения являются приближенными и для современных моделей авто­мобилей завышенными. Опыт исследований Kпр показывает, что при более детальном подходе к роли коэффициента приведения его значе­ния необходимо дифференцировать также в зависимости от уровня ско­ростного режима и профиля дороги.
Плотность транспортного потока qa является пространственной ха­рактеристикой, определяющей степень стесненности движения на по­лосе дороги. Ее измеряют числом транспортных средств, приходящих­ся на 1 км протяженности дороги. Предельная плотность достигается при неподвижном состоянии колонны автомобилей, расположенных вплотную друг к другу на полосе. Для потока современных легковых автомобилей теоретически такое предельное значение qmax составляет около 200 авт/км. Практические исследования на кафедре организа­ции и безопасности движения МАДИ показали, что этот показатель колеблется в пределах 170-185 авт/км. Это объясняется тем, что води­тели не подъезжают при заторе вплотную к переднему автомобилю. Естественно, что при предельной плотности движение невозможно даже при централизованном автоматическом управлении автомобилями, так как отсутствует дистанция безопасности. Плотность qmax вместе с тем имеет значение как показатель, характеризующий структуру (состав) транспортного потока. Наблюдения показывают, что при колонном движении легковых автомобилей с малой скоростью плотность потока может достигать 100 авт/км. При использовании показателя плотности потока необходимо учитывать коэффициент приведения для различных типов транспортных средств, так как в противном случае сравне­ние qa для различных по составу потоков может привести к несопоста­вимым результатам. Так, если принять, что на дороге движется колон­на автобусов с плотностью 100 авт/км (возможной для легковых авто­мобилей), то фактическая длина такой колонны вместо 1 км практи­чески составит 2,0–2,5 км. Если же учесть рекомендуемое значение Кпр для автобусов, равное 2,5, то максимальная плотность движения ко­лонны автобусов в физических единицах может составить 40 автобусов на 1 км, что является реальным.
Чем меньше плотность потока, тем свободнее себя чувствуют води­тели, тем выше скорость, которую они выбирают. Наоборот, по мере повышения qа, т. е. стесненности движения, от водителей требуется по­вышение внимательности, точности действий. Кроме того, повышает­ся их психическая напряженность. Соответственно увеличивается ве­роятность ДТП вследствие ошибки, допущенной одним из водителей, или отказа автомобиля.
В зависимости от плотности потока движение по степени стеснен­ности подразделяют на свободное, частично связанное, насыщенное, ко­лонное.
Численные значения qа в физических единицах (автомобилях), со­ответствующих этим состояниям потока, весьма существенно зависят от параметров дороги и в первую очередь от ее плана и профиля, коэф­фициента сцепления ?, а также состава потока по типам транспортных средств, что, в свою очередь, влияет на выбираемую водителями ско­рость.
Скорость движения va является важнейшим показателем, так как представляет целевую функцию дорожного движения. Наиболее объек­тивной характеристикой процесса движения транспортного средства по дороге может служить график изменения его скорости на протяже­нии всего маршрута движения. Однако получение таких пространствен­ных характеристик для множества движущихся автомобилей является сложным, так как требует непрерывной автоматической записи скоро­сти на каждом из них. В практике организации движения принято оце­нивать скорость движения транспортных средств мгновенными ее зна­чениями va, зафиксированными в отдельных типичных сечениях (точ­ках) дороги.
Скорость сообщения vc является измерителем быстроты доставки пассажиров и грузов и определяется как отношение расстояния между пунктами сообщения ко времени нахождения транспортного средства в пути (времени сообщения). Этот же показатель применяется для ха­рактеристики скорости движения автомобилей по отдельным участкам дорог.
Темп движения является показателем, обратным скорости сообще­ния, и измеряется временем в секундах, затрачиваемым на преодоле­ние единицы длины пути в километрах. Этот измеритель весьма удобен для расчетов времени доставки пассажиров и грузов на различные рас­стояния. Мгновенная скорость транспортного средства и соответствен­но скорость сообщения зависят от многих факторов и подвержены зна­чительным колебаниям.
Скорость одиночно движущегося автомобиля в пределах его тяго­вых возможностей определяет водитель, являющийся управляющим звеном в системе ВАДС. Водитель постоянно стремится выбрать наиболее целесообразный режим скорости исходя из двух главных крите­риев – минимально возможной затраты времени и обеспечения безо­пасности движения. В каждом случае на выбор скорости водителем ока­зывают влияние его квалификация, психофизиологическое состояние, цель движения, условия его организации. Так, исследования, проведен­ные в одинаковых дорожных условиях на одном типе автомобилей, по­казали, что средняя скорость движения автомобиля у разных водите­лей высокой квалификации может колебаться в пределах ± 10 % от сред­него значения. У малоопытных водителей эта разница больше.
Рассмотрим влияние параметров транспортных средств и дороги на скорость движения. Верхний предел скорости автомобиля определяет­ся его максимальной конструктивной скоростью vmax, которая зависит, главным образом, от удельной мощности двигателя. Максимальная ско­рость vmax, км/ч, современных автомобилей колеблется в широких пре­делах в зависимости от их типа и примерно составляет:
Легковые автомобили большого и среднего классов              200
То же малого класса                                                         160
Грузовые автомобили средней грузоподъемности              100
То же большой грузоподъемности и автопоезда               90
Опыт показывает, что водитель ведет автомобиль с максимальной скоростью лишь в исключительных случаях и кратковременно, так как это сопряжено с чрезмерно напряженным режимом работы агрегатов автомобиля; кроме того, имеющиеся на дороге даже незначительные подъемы требуют для поддержания стабильной скорости запаса мощ­ности. Поэтому даже при благоприятных дорожных условиях водитель ведет автомобиль с максимальной скоростью длительного движения или крейсерской скоростью. Крейсерская скорость для большинства авто­мобилей составляет (0,75?0,85) vmax.
Однако реальные дорожные условия вносят существенные поправ­ки в фактический диапазон наблюдаемых скоростей движения. Укло­ны, криволинейные участки и неровности покрытия дороги вызывают снижение скорости как из-за ограниченности динамических свойств автомобилей, так и, главным образом, в связи с необходимостью обес­печения их устойчивости на дороге. Эти объективные факторы особенно сказываются на скорости наиболее быстроходных автомобилей. Как показывают наблюдения, фактический диапазон мгновенных скорос­тей свободного движения автомобилей на горизонтальных участках некоторых магистральных улиц и дорог нашей страны составляет 50 – 120 км/ч, несмотря на установленные Правилами ограничения. Эти цифры не относятся к дорогам, не имеющим надлежащего покрытия или с разрушенным покрытием, где скорость может понизиться до   10 – 15 км/ч.
Существенное влияние на скорость движения оказывают те элемен­ты дорожных условий, которые связаны с особенностями психофизио­логического восприятия водителя и уверенностью управления. Здесь вновь необходимо подчеркнуть неразрывность элементов системы ВАДС и решающее влияние водителей на характеристики дорожного движения.
Важнейшими факторами, оказывающими влияние на режимы дви­жения через восприятие водителя, являются расстояние (дальность) ви­димости SВ на дороге и ширина полосы Вд, т. е. "коридора", выделен­ного для движения автомобилей в один ряд. Под расстоянием видимо­сти понимается протяженность участка дороги перед автомобилем, на котором водитель в состоянии различить поверхность дороги. Расстоя­ние SB определяет возможность для водителя заблаговременно оцени­вать условия движения и прогнозировать обстановку. Обязательным условием безопасности движения является превышение расстояния SB над значением остановочного пути So данного транспортного средства в любых конкретных дорожных условиях: SB > So.
При малой дальности видимости водитель лишается возможности прогнозировать обстановку, испытывает неуверенность и снижает ско­рость автомобиля. Примерные значения снижения скорости движения ?v по сравнению со скоростью, которая обеспечивается при дальности видимости 700 м и более, следующие:
SВ, м
100
200
300
400
500
600
?v, %:
 
 
 
 
 
 
грузовых
13,5
9,8
5,8
3,3
2,0
1,0
легковых
17,5
12,7
8,3
4,9
2,5
0,9
Ширина полосы движения, предназначенная для движения авто­мобилей в один ряд и выделенная обычно продольной разметкой, оп­ределяет требования к траектории движения автомобиля. Чем меньше ширина полосы, тем более жесткие требования предъявляются к води­телю и тем больше его психическое напряжение при обеспечении точ­ного положения автомобиля на дороге. При малой ширине полосы, а также при встречном разъезде на узкой дороге водитель под воздействи­ем зрительного восприятия снижает скорость.
На основании исследований на дорогах профессором Д. П. Великановым получена зависимость, характеризующая приближенно связь между скоростью и необходимой шириной полосы дороги,
,
(2.1)

где bа – ширина автомобиля, м; 0,3 – дополнительный зазор, м.
По аналогии с понятием "динамического габарита" автомобиля по­казатель Вд можно назвать "динамической шириной" транспортного средства ("динамическим коридором"), так как для уверенного движе­ния со скоростью va водитель должен располагать примерно таким сво­бодным "коридором" движения. В этой зависимости можно еще раз проследить связи компонентов комплекса ВАДС в дорожном движе­нии. В формуле (2.1) Вд представляет собой элемент дороги (Д), bа – характеристику автомобиля (элемент А), коэффициент 0,015 отражает психофизиологические свойства водителя и ходовые свойства автомо­биля (подсистему ВА).
Согласно приведенной зависимости, скорость, с которой водитель средней квалификации длительно и уверенно может вести автомобиль, ориентировочно составляет: при управлении легковым автомобилем и ширине полосы 3 м около 65 км/ч, а при ширине полосы 3,5 м около 90 км/ч; при управлении автомобилем с габаритной шириной 2,5 м и ширине полосы 3,5 м около 50 км/ч.
Однако это не исключает того, что некоторые водители не могут достаточно точно и своевременно оценить изменение расстояния ви­димости или ширины полосы движения и правильно выбрать скорость. Поэтому в условиях ограниченной видимости и малой ширины поло­сы движения более часто происходят ДТП.
На основе исследований НИиПИ Генплана г. Москвы были разра­ботаны рекомендации желательных значений ширины полосы движе­ния на прямолинейных участках городских дорог (табл. 2.3)
На фактическую скорость движения автомобилей оказывают влия­ние также и другие причины и особенно существенные – метеороло­гические условия, а в темное время суток – освещение дороги. Таким образом, скорость свободного движения является случайной величи­ной и для потока однотипных автомобилей в заданном сечении дороги характеризуется обычно нормальным законом распределения или близ­ким к нему (рис. 2.5).
Чем лучше дорожные и метеорологические условия, тем больше амплитуда колебаний скоростей автомобилей различных типов, что обусловлено их скоростными и тормозными качествами, а также и ха­рактеристикой водителей.
Таблица 2.3

и т.д.................


Преобладающий тип транспортных средств
Ширина полосы, м, при скорости движения, км/ч
40
60

Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.