На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Диплом Характеристика основных понятий теории упругости, уравнений равновесия и формул Коши, анализ линейного закона Гука и определение условий пластичности. Решение задачи упругопластической деформации трубы под действием равномерного внутреннего давления.

Информация:

Тип работы: Диплом. Предмет: Математика. Добавлен: 13.02.2010. Сдан: 2010. Уникальность по antiplagiat.ru: --.

Описание (план):


2
Министерство образования и науки Российской Федерации
Государственное образовательное учреждение высшего профессионального образования «Чувашский государственный педагогический университет им. И.Я. Яковлева»
Кафедра математического анализа
Выпускная квалификационная работа по математике
УПРУГОПЛАСТИЧЕСКАЯ ДЕФОРМАЦИЯ ТРУБЫ ПОД ДЕЙСТВИЕМ ВНУТРЕННЕГО ДАВЛЕНИЯ

Чебоксары - 2006
ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ

ГЛАВА I. ОСНОВНЫЕ УРАВНЕНИЯ ТЕОРИИ УПРУГОСТИ И ПЛАСТИЧНОСТИ

1.1 Основные понятия теории упругости

1.2 Уравнения равновесия

1.3 Формулы Коши

1.4 Линейный закон Гука

1.5 Условия пластичности

ГЛАВА II. ЗАДАЧА УПРУГОПЛАСТИЧЕСКОГО ДЕФОРМИРОВАНИЯ ТРУБЫ

2.1 Механическая постановка задачи

2.2 Математическая постановка задачи

2.3 Решение задачи

ВЫВОДЫ
ЛИТЕРАТУРА
ВВЕДЕНИЕ
Детали машин в процессе работы подвергаются внешним воздействиям.
В результате элементы этой детали изменяют форму и размеры, т.е. деформируются. Деформации после снятия нагрузки могут исчезать, а могут оставаться. Исчезающие деформации называются упругими, а остающиеся - остаточными (пластическими).
В данной работе рассматривается упругопластическая деформация трубы под действием равномерного внутреннего давления.
В первой главе приведены основные уравнения, используемые при решении поставленной задачи: основные понятия теории упругости, уравнения равновесия, формулы Коши, линейный закон Гука и условия пластичности.
Вторая глава посвящена решению поставленной задачи. Приводятся формулы для компонент напряжений и деформации в упругой и пластической зонах, также приводится трансцендентное уравнение для нахождения радиуса границы пластической и упругой областей. Задача решается в линеаризованном виде методом малого параметра.
ГЛАВА I. ОСНОВНЫЕ УРАВНЕНИЯ ТЕОРИИ УПРУГОСТИ И ПЛАСТИЧНОСТИ
1.1 Основные понятия теории упругости
В данном пункте получим классические уравнения деформирования в предположении, что среда эта - сплошная, однородная и изотропная, т.е. упругие свойства среды во всех направлениях одинаковы. Будем считать, что она линейно деформируема (для материала среды справедлив закон Гука), а перемещения и деформации тела достаточно малы.
При составлении уравнений механики деформируемого твёрдого тела выбирается соответствующая система координат. В зависимости от формы тела используются декартовые, полярные, цилиндрические координаты и другие.
При решении полной задачи удобно использовать полярную систему координат, в которой положение каждой точки определяется координатами r и (рис. 1.1).
Линейная дуговая координата s и угол связаны зависимостью , откуда следует соотношение между их дифференциалами.
Рассматриваемое тело находится под действием поверхностных нагрузок. В результате чего в теле появляются напряжения, которые, также как и поверхностные нагрузки, характеризуются интенсивностями. Под действием внешних нагрузок точки тела перемещаются в пространстве. Например, точка после деформации заняла положение . Полное перемещение зададим двумя компонентами: - в радиальном направлении, - в тангенциальном.
Для получения уравнений в полярной системе ординат мысленно выделим в окрестности некоторой точки тела элемент , , 1 (рис. 1.2).
На гранях этого элемента действуют напряжения, которые можно разложить на нормальную составляющую к грани (нормальное напряжение - , ) и касательную (касательное напряжение - , ).
1.2 Уравнения равновесия

Первая группа уравнений выражает условия равновесия элемента среды во взаимодействии с соседними элементами, их называют статическими уравнениями.
Вторая группа уравнений связывает деформации элемента тела с функциями, выражающими перемещение его точек. Они называются геометрическими уравнениями.
Последняя группа уравнений - это уравнения, которые выражают зависимость между напряжениями и деформациями элемента. Именно в этих уравнениях учитываются механические свойства материала, их называют физическими.
Рассмотрим указанные уравнения подробно.
Уравнения равновесия (статические уравнения)
Эти уравнения выражают равенство нулю сумм проекций всех элементарных сил, действующих на элемент , , 1 (рис. 1.2). Приняв напряжения, указанные на этом рисунке, за положительные, получим уравнения равновесия в виде
В этих равенствах учтены проекции сил, действующих на гранях , которые они дают вследствие наклона на малые углы . Косинусы этих малых углов приняты равными единице. Заменив в приведенных равенствах
, , , ,
учтя выражение для частных дифференциалов напряжений (нижние индексы у обозначения частных дифференциалов здесь опущены в целях упрощения записи)
, , , ,
а также сохранив и отбросив слагаемые высшего порядка малости, получим уравнение равновесия в полярных координатах:
Приравняв нулю сумму моментов сил, действующих на момент , , 1, относительно оси, проходящей через его центр перпендикулярно плоскости площадки , , и, отбросив слагаемые высшего порядка малости, получим закон парности касательных напряжений .
1.3 Формулы Коши (геометрические уравнения)

Эти уравнения устанавливают зависимость между перемещениями и деформациями. Для их вывода будем считать функции , заданными, а через них выразим деформации.
Геометрически деформация тела может быть представлена двумя группами простейших деформаций: деформацией растяжения - , и деформацией сдвига , которые соответственно выражают относительные удлинения отрезков и :
, (рис. 1.3)
и изменение прямого угла между ними на угол сдвига :
(рис. 1.4)
Будем считать, что элемент тела сначала получил перемещение из точки в точку , как жесткое целое, а затем произошел сдвиг за счет поворота его граней на малые углы , , т.е. угол сдвига равен .
Для определения деформации рассмотрим отрезок длиной . Для малых перемещений и деформаций примем, что на изменение длины отрезка влияет лишь перемещение , а его малый наклон, в общем случае вызываемый перемещением , не изменяет его длины.
Обозначим: - частный дифференциал (линейная часть приращения) функции и при изменении координаты на .
, т.е.
Тогда
.
Аналогично
,
где производная по s заменена на производную по по соотношению , так как .
Для определения деформации рассмотрим рис. 1.4. Так как частные дифференциалы и , то
, .
Имеем угол сдвига
, где .
Деформации , составляют только часть полных деформаций и поэтому отмечены звездочкой. Другую часть этих деформаций получим, давая точкам элемента перемещения (рис. 1.5) и (рис. 1.6).


Соответственно получим деформации, обусловленные кривизной элемента
,
где знак минус соответствует возрастанию первоначально прямого угла элемента.
Окончательные суммарные деформации
, ,
будут
Эти равенства представляют геометрические уравнения в полярных координатах, являющиеся аналогом уравнений Коши.
1.4 Линейный закон Гука (физические уравнения)

Для линейно-упругих изотропных тел физическими уравнениями являются соотношения для обобщенного закона Гука, известные из курса сопротивления материалов
,
где и - модули упругости при растяжении и сдвиге, а - коэффициент Пуассона. Для изотропного материала они связаны зависимостью , так что независимых постоянных упругости для указанного материала имеется только две.
Запишем выражение для относительной объемной деформации элемента
,
где - модуль объемной деформации материала.
Заметим, что при модуль объемной деформации , что, согласно выражению для относительной объемной деформации, соответствует материалу, не изменяющему объем при деформации (несжимаемый материал).
В случае плоского напряженного состояния система примет вид:
.
Для плоской деформации () закон Гука записывается в несколько иной форме в виду наличия напряжения :
,
.
Эта система совершенно аналогична системе, описывающей напряженное состояние, но содержит новые условные константы упругости
, ,
причем легко проверить, что справедливо равенство
.
С учетом введенных условных констант упругости физические соотношения для плоской деформации примут тот же вид, что и для случая плоского напряженного состояния, но в них надо заменить на , на .
Таким образом, любое решение приведенных выше уравнений для плоского напряженного состояния может быть применено и для соответствующего случая плоской деформации после замены действительных констант упругости данного материала на условные. Учитывая сказанное, в дальнейшем будем подразумевать под плоской задачей случай плоского напряженного состояния.
В полярной системе координат уравнения закона Гука остаются без изменения, меняются лишь индексы у напряжений и деформаций:
.
Полученные уравнения дают возможность вычислить деформации, если известны напряжения. Назовем их законом Гука в прямой форме.
Преобразуем
.
В обратной форме
или, так как , то
.
1.5 Условия пластичности

При решении задач теории пластичности во многих случаях необходимо знать, при каких условиях материал в рассматриваемой точке переходит из упругого состояния в пластическое. Такие условия называются условиями пластичности. При линейном напряженном состоянии условие пластичности устанавливается опытным путем. В этом случае отлично от нуля только главное напряжение и пластические деформации возникают, когда
; , (1.5.1)
где - предел текучести при растяжении (постоянная величина для каждого материала). При чистом сдвиге условие пластичности, получаемое экспериментальным путем, имеет вид
,
где - предел текучести при чистом сдвиге (также постоянная величина для каждого материала).
В общем случае плоского или объемного напряженных состояний экспериментально невозможно установить условия пластичности для бесконечного множества соотношений между составляющими напряжений. Поэтому условие пластичности для сложного напряженного состояния устанавливается гипотетическим путем с последующей экспериментальной проверкой.
Рассмотрим два условия пластичности, наиболее часто используемые в теории пластичности и достаточно правильно определяющие переход материала из упругого состояния в пластическое.
Первое условие - условие пластичности Треска - Сен-Венана - гласит, что пластические деформации в материале возникают, когда максимальные касательные напряжения достигают значения, равного пределу текучести при чистом сдвиге:
. (1.5.2)
Максимальные касательные напряжения определяются формулой
: . (1.5.3)
Подставляя сюда главные напряжения при линейном напряженном состоянии (1.5.1), в момент появления пластических деформаций получаем
. (1.5.4)
Сравнивая формулы (1.5.2) и (1.5.4) заключаем, что
. (1.5.5)
После подстановки выражений ( 1.5.3 ) и ( 1.5.5 ) в формулу ( 1.5.1 ) приходим к условию пластичности Треска-Сен-Венана в таком виде:
. (1.5.6)
Второе условие - условие пластичности Мизеса-Генки - гласит, что пластические деформации в материале возникают, когда интенсивность касательных напряжений достигает некоторого постоянного для некоторого материала значения:
. (1.5.7)
Определим эту постоянную из результатов испытаний при простом растяжении. Подставляя в формулу
(1.5.8)
главные напряжения (1.5.1), найдем значение интенсивности касательных напряжений при растяжении в момент появления пластических деформаций:
. (1.5.9)
Сравнивая формулы (1.5.9) и (1.5.7), заключаем, что постоянная
. (1.5.10)
Подставляя выражения (1.5.8) и (1.5.10) в формулу (1.5.7), приходим к условию пластичности Губера-Мизеса-Генки в такой форме:
(1.5.11)
Или
.
Оба рассмотренных условия пластичности д и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.