На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска



Наименование:


курсовая работа Расход. Уравнение расхода

Информация:

Тип работы: курсовая работа. Добавлен: 03.10.2012. Сдан: 2012. Страниц: 9. Уникальность по antiplagiat.ru: < 30%

Описание (план):


Содержание 
    Расход. Уравнение расхода…………………………………….  3 - 4
    Уравнение Бернулли для потока реальной жидкости………..  5 - 9
    Гидроаппаратура. Характерные типы, их назначение, принцип действия, конструктивные особенности……………………………..10 - 16
    Задачи 8Л-2,6.13Н……………………………………………….
    Список используемой литературы……………………………..
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Расход. Уравнение  расхода.
Расходом называется количество жидкости, протекающее через живое сечение потока (струйки) в единицу времени. Это количество можно измерять в единицах объема, в весовых единицах или единицах массы, в связи с чем различают расходы: объемный Q, весовой G и массовый M.
Для элементарной струйки, имеющей бесконечно малые  площади сечений, можно считать истинную скорость ? одинаковой во всех точках каждого сечения. Следовательно, для этой струйки расход
dQ = ?dS     м3/сек,                                
Где dS  - площадь сечения струйки;
        Весовой расход
dG = ?dQ  кГ/сек или н/сек
        и массовый расход
dM = ?dQ = ??dS    кГ ·сек/м    или кг/сек.
 
Для потока конечных размеров в общем случае скорость имеет различное значение в разных точках сечения; поэтому расход должен подсчитываться как сумма элементарных расходов струек
Q = ? ?dS
 
Обычно в  рассмотрение вводится средняя по сечению  скорость
?ср = Q/S,
отсюда
Q = ?ср S.
Основываясь на законе сохранения вещества, на предположении о сплошности (неразрывности) течения и на указанном выше свойстве трубки тока, заключающемся в ее «непроницаемости», можно для установившегося течения несжимаемой жидкости утверждать, что расход во всех сечениях элементарной струйки (рис. 1) один и тот же:
 

Рис. 1 Струйка
 
dQ = ?1 dS1 = ?2 dS 2 = const (вдоль струйки).
 
Это уравнение  называется уравнение расхода для элементарной струйки.
Аналогичное уравнение можно составить и  для потока конечных размеров, ограниченного непроницаемыми стенками, только вместо истинных скоростей следует ввести средние скорости, в результате
 
 Q = ?cp1 S1= ?cp2 S2 = const (вдоль потока).
 
Из последнего уравнения следует, что средние  скорости в потоке несжимаемой жидкости обратно пропорциональны площадям сечений:
?ср1 / ?ср2 = S2 / S1 .
Очевидно, что уравнение расхода является  частным случаем общего закона сохранения вещества, а также условием сплошности (неразрывности) течения.
 
 
 
 
 
 
 
 
 
Уравнение Бернулли для потока реальной (вязкой жидкости).
При переходе от элементарной струйки идеальной  жидкости к потоку реальной (вязкой) жидкости, имеющему конечные размеры  и  ограниченному стенками, необходимо учесть неравномерность распределения  скоростей по сечению, а также  потери энергии (напора). То и  другое является следствием вязкости жидкости.
При движении вязкой жидкости вдоль твердой стенки, например в трубе, происходит торможение потока вследствие влияния вязкости, а также благодаря действию сил молекулярного сцепления между жидкостью и стенкой. Поэтому наибольшей величины скорость достигает в центральной части потока, по  мере приближения к стенке скорость уменьшается практически до нуля. Получается распределение скоростей, подобное тому, которое показано на  рис. 2.
Неравномерное распределение скоростей означает скольжение (сдвиг) одних слоев или  частей жидкости по другим, вследствие чего возникают касательные напряжения (напряжения трения). Кроме того, движение вязкой жидкости часто сопровождается вращением частиц, вихреобразованием и перемешиванием. Все это требует затраты энергии, ввиду чего удельная энергия движущейся вязкой жидкости (полный напор) не остается постоянной, как в случае идеальной жидкости, а постепенно расходуется на преодоление сопротивлений и, следовательно, уменьшается вдоль потока.
Вследствие  неравномерного распределения скоростей  приходится вводить в рассмотрение среднюю по сечению скорость ?ср , а также среднее значение  удельной энергии жидкости в данном сечении.
Прежде чем  приступить к рассмотрению уравнения  Бернулли для потока вязкой  жидкости сделаем следующее допущение: будем считать, что в пределах рассматриваемых поперечных сечений потока справедлив основной закон гидростатики, например, в форме z + p/? = z0 + p0/?, т.е. гидростатический напор в пределах сечения есть величина одинаковая для всех точек данного сечения:
z = p/? = const.
Тем самым  мы предполагаем, что при движении жидкости отдельные струйки оказывают  друг на друга в поперечном направлении  такое же давление, как слои жидкости в неподвижном состоянии. Это будет соответствовать действительности и может  быть  доказано теоретически в том случае, когда течение в данных поперечных сечениях является параллельноструйным.
Мощностью тока в данном сечении будем называть полную энергию, которую проносит поток через это сечение в единицу времени. Так как в различных точках поперечного сечения потока частицы жидкости обладают  различной энергией, то сперва выразим элементарную мощность (мощность элементарной струйки) в виде произведения полной удельной энергии жидкости в данной точке на элементарный весовой расход
dN  = H?dQ = (z + p/? + ?2/2g) ??dS.
Мощность  всего потока найдем как интеграл от предыдущего выражения по всей площади  S :
N = ? ? ( z + p/? + ?2/2g) ?dS,
или, учитывая сделанное допущение,
N = ? ( z + p/? ) ? ?dS + ?/2g ? ?3dS.
Найдем среднее  по сечению значение полной удельной энергии жидкости делением полной мощности потока на весовой расход.
Используя выражение  Q = ? ?dS, получим
Hcp = N/Q? = z + p/? + 1/2gQ ? ?3dS.
Умножив и  разделив последний член на ?2ср , получим
Hcp = z + p/? + ?     / ?3cp S ·?2cp / 2g = z + p/? + ?·?2cp / 2g,
Где ? – безразмерный коэффициент, учитывающий неравномерность распределения скоростей и равный
 
 
? =
Если умножить числитель и знаменатель выражения (       ) на  ?/2, то нетрудно убедиться, что коэффициент ? представляет собой отношение действительной кинетической энергии потока в  данном сечении к кинетической энергии того же потока и в том же сечении к кинетической энергии того же потока  и в том же сечении, но при равномерном распределении скоростей.
Для обычного распределения скоростей (рис. 2 )  коэффициент ? всегда больше единицы, а при равномерном распределении скоростей  равен единице.

Рис.2 Распределение скоростей в потоке жидкостей
 
Возьмем два сечения реального потока, первое и второе, и обозначим средние значения удельной энергии (полного напора) жидкости  сечениях соответственно Нср1 и Нср2 тогда
 
Нср1 = Нср2 +?h,
где ?h – суммарная потеря удельной энергии (напора) на участке между рассматриваемыми сечениями.
Используя формулу (    ), предыдущее уравнение  можно переписать так:
 
 
Это и есть уравнение Бернулли для потока вязкой жидкости. От аналогичного уравнения для элементарной струйки идеальной жидкости полученное уравнение отличается членом, представляющим собой потерю удельной энергии (напора), и коэффициентом, учитывающим неравномерность распределения скоростей. Кроме того, скорости, входящие в это уравнение, являются средними по сечениям.
Уравнение Бернулли  (     ) применимо не только для жидкостей, но  для газов  при условии, что скорость их движения значительно меньше скорости звука.
Графически  это уравнение может быть представлено диаграммой подобно тому, как это мы делали для идеальной жидкости, но с учетом потери напора. Последняя представляет собой  также некоторую высоту, которая неуклонно возрастает вдоль потока (рис. 3).
Если для  струйки идеальной жидкости уравнение  Бернулли представляет собой закон сохранения механической энергии, то для потока реальной жидкости оно является уравнением баланса энергии с учетом потерь. Энергия, теряемая жидкостью на рассматриваемом участке течения, разумеется, не исчезает бесследно, а лишь превращается в другую форму – тепловую.
 
 

Рис. 3 Графическая иллюстрация уравнения Бернулли
для реального  потока
Правда, тепловая энергия непрерывно рассеивается, поэтому  повышение температуры часто бывает практически малозаметным. Этот процесс преобразования механической  в тепловую является необратимым, т.е. таким, обратное течение которого  (превращение тепловой энергии в механическую) не возможно.
Уменьшение  среднего значения полной удельной энергии  жидкости вдоль потока, отнесенное к единице его длины, называется гидравлическим уклоном. Изменение удельной потенциальной энергии жидкости, отнесенное к единице длины, называется пьезометрическим уклоном. Очевидно, что в трубе постоянного диаметра с неизменным распределением скоростей указанные уклоны одинаковы.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Гидроаппаратура
Гидравлический  распределитель (гидрораспределитель) — устройство, предназначенное для управления гидравлическими потоками в гидросистеме с помощью внешнего воздействия (сигнала).
Рис. 4. Условное графическое обозначение трёхпозиционного четырехлинейного гидрораспределителя с ручным управлением

 
Назначение  гидрораспределителей
Гидрораспределитель управляет движением  выходного звена гидродвигателя путём перенаправления потоков рабочей жидкости.


Рис. 5. Простейшая гидросхема
На рис. 5 показана простейшая гидросхема. В показанном положении распределителя (Р) жидкость от насоса (Н) к гидроцилиндру (Ц) не поступает, и идёт на слив в гидробак (Б) через предохранительный клапан (КП). Если оператор перемещает ручку гидрораспределителя таким образом, что запорно-регулирующий элемент смещается в положение 1, то рабочая жидкость поступает в поршневую полость гидроцилиндра и поршень движется вправо, а жидкость из штоковой полости гидроцилиндра идёт на слив (направления движения рабочей жидкости через распределитель указаны стрелками). Если оператор возвращает ручку гидрораспределителя в исходное положение, то поршень гидроцилиндра останавливается, и рабочая жидкость опять идёт на слив в бак. Чтобы поршень гидроцилиндра начал движение влево, оператору необходимо переместить ручку распределителя таким образом, чтобы запорно-регулирующий элемент сместился в положение 2.
Классификация распределителей
Гидрораспределители разделяют по типу запорно-регулирующих элементов на золотниковые, крановые, клапанные, струйные и распределители типа «сопло-заслонка».
Золотниковые  распределители получили наибольшее распространение в гидроприводе благодаря простоте их изготовления, компактности и высокой надёжности в работе. Они применяются при весьма высоких значениях давления (до 32 МПа) и значительно бо?льших расходах, чем крановые распределители.
Крановые  распределители в гидроприводе нашли самое широкое применение. Конструктивно их запорный элемент выполнен в виде цилиндрической, конической, шаровой пробки или в виде плоского поворотного крана.
Клапанные распределители. Главным недостатком наиболее распространённых золотниковых распределителей являются утечки, которые не позволяют удерживать гидродвигатель под нагрузкой в неподвижном состоянии, а также невозможность работы при высоких давлениях (свыше 32 МПа). В таких случаях для позиционного переключения предпочтительны клапанные распределители, имеющие увеличенные по сравнению с золотниками размеры и массу, но позволяющие герметически перекрывать гидролинии. Клапанные распределители применяются, в основном, в гидросистемах, в которых необходимо обеспечить хорошую герметичность. Для этого запорный элемент распределителя выполняют, как правило, в виде конического или шарового клапана.
В гидрораспределителе типа «сопло-заслонка» используется принцип построения гидравлических делителей давления.


Рис. 6 Крановый гидрораспределитель
К достоинствам струйных распределителей относится низкая чувствительность к загрязнению рабочей жидкости ,которая обусловлена отсутствием подвижных частей в таких распределителях.
Гидроклапан (гидравлический клапан) — это гидроаппарат, предназначенный для регулирования параметров потока жидкости путём изменения проходного сечения гидроаппарата за счёт изменения положения запорно-регулирующего элемента под воздействием потока жидкости (непосредственно или опосредовано).
Различают гидроклапаны регулирующие и направляющие. Первые из них осуществляют регулирование  давления в потоке жидкости, а вторые — пропускают или останавливают поток жидкости при достижении параметрами потока (давления, разности давлений и т. д.) заданых настройками клапана значений.
К регулирующим гидроклапанам относятся:
    предохранительный клапан, который поддерживает давление не выше определённого уровня на входе в гидроклапан; в нормальном положении запорно-регулирующий элемент гидроклапана закрыт, и открывается, только тогда, когда давление на входе в гидроклапан достигнет предельно-допустимого значения (давление срабатывания);
    переливной клапан поддерживает давление на входе в клапан на заданном уровне; в нормальном положении переливной гидроклапан открыт и через него осуществляется постоянный слив части потока рабочей жидкости;
    редукционный клапан поддерживает постоянным давление на выходе из клапана;
    клапан разности давлений поддерживает постоянную разность между давлениями на входе и выходе из клапана;
    клапан соотношения давлений поддерживает постоянным соотношение между давлениями на входе и выходе из клапана.
Рис.7
1. Условное графическое обозначение предохранительного клапана прямого действия
2. Условное графическое обозначение предохранительного клапана непрямого действия
3. Условное графическое обозначение редукционного клапана
4. Условное графическое обозначение клапана разности давлений
Условное графическое  обозначение клапана соотношения  давлений
 
К направляющим гидроклапанам относятся следующие:
    обратный клапан, который пропускает поток жидкости только в одном направлении; функциональное отличие обратного клапана от предохранительного заключается в том, что предохранительный срабатывает только в том случае, когда давление на входе достигает определённого уровня, а обратный клапан срабатывает при любом, даже самом минимальном превышении давления на входе над давлением на выходе из клапана; часто к обратным клапанам относятся гидрозамки;
    клапан последовательности пропускает поток жидкости в том случае, если либо давление на входе в клапан, либо давление в некотором постороннем потоке достигает определённого значения;
    клапан выдержки времени предназначен для пропускания или остановки потока жидкости через определённый промежуток времени.

Рис. 7  Условное графическое  обозначение обратного клапана
    Условное графическое обозначение клапанов последовательности: а) с управлением от входящего потока жидкости; б) с управлением от стороннего потока жидкости.
По  характеру срабатывания запорно-регулирующего  элемента гидроклапаны бывают прямого  действия и непрямого действия. Первые срабатывают непосредственно под воздействием потока рабочей жидкости, а вторые — посредством промежуточного регулирующего элемента. Время срабатыван
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.