На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Курсовик Теория групп как фундаментальное понятие и один из разделов современной математики. Основные определения и теоремы. Смежные классы: правые и левые, двойные. Нормальные подгруппы, фактор-группы. Способы их использования в решении различных задач.

Информация:

Тип работы: Курсовик. Предмет: Математика. Добавлен: 30.03.2010. Сдан: 2010. Уникальность по antiplagiat.ru: --.

Описание (план):


22
МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ
Учреждение образования
Математический факультет
Кафедра алгебры и методики преподавания математики
Курсовая работа
СОДЕРЖАНИЕ
Ведение
1.Основные определения и теоремы
2.Смежные классы
2.1. Правые и левые смежные классы
2.2 Двойные смежные классы
3. Нормальные подгруппы и фактор-группы
3.1 Нормальные подгруппы
3.2 Фактор-группы
Заключение
Список использованных источников
ВВЕДЕНИЕ
Первый значительный вклад в теорию групп внес Эварист Галуа (1811-1832) при исследовании вопроса о разрешимости в радикалах алгебраических уравнений. Именно Галуа впервые ввел понятие группы и попытался выяснить, как они устроены. До него группы в виде подстановок корней уравнения возникли также в работах Лагранжа (1771), Роффини (1799) и Абеля (1825).
В 1830-1832 годах Галуа пришел к понятиям нормальной подгруппы, разрешимой группы, простой группы. С тех пор многие ученые математики занимались исследованиями в вопросах связанными с группами, вводили новые понятия, строили свои догадки, формулировали и доказывали теоремы.
Теория групп - один из центральных разделов современной алгебры, в настоящее время активно разрабатываемый в Беларуси в научных школах Минска, Гомеля, Витебска, Новополоцка, Мозыря.
Понятие группы приобретает в настоящее время все большее господство над самыми различными разделами математики и ее приложений и наряду с понятием функции относится к самым фундаментальным понятиям всей математики.
Понятие группы не труднее понятия функции; его можно освоить на самых первых ступенях математического образования, тем более что сделать это можно на материале элементарной математики. Вместе с тем знакомство с этой теорией кажется одним из самых естественных способов ознакомления с современной математикой вообще.
Моя цель состоит в том, чтобы разобраться с начальными понятиями, связанными с группами: фактор-группы, смежные классы, доказать наиболее важные теоремы, следствия, выделить некоторые свойства.
1.ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ И ТЕОРЕМЫ
Рассмотрим некоторое непустое множество G, на котором определена бинарная алгебраическая операция.
ОПРЕДЕЛЕНИЕ 1.1. Пара (G,*) называется группой, если:
1) операция ассоциативна, т.е. для любых a, b, c G выполняется
a*(b*c)=(a*b)*c;
2) в G существует нейтральный элемент относительно, т.е. для любого a G найдется такой элемент e ,что выполняется
a*e=e*a=a
3) для любого элемента G существует симметричный элемент относительно, т.е. для любых a, b G выполняется
a*b=b*a=e;
ОПРЕДЕЛЕНИЕ 1.2. Подмножество H группы G называется подгруппой, если H-группа относительно той же операции, которая определена на G.
ОПРЕДЕЛЕНИЕ 1.3. Зафиксируем в группе G элемент a. Пересечение всех подгрупп группы G, содержащих элемент а, называется циклической подгруппой, порожденной элементом а, и обозначается а.
ОПРЕДЕЛЕНИЕ 1.4. Если G совпадает с одной из своих циклических подгрупп, то G называют циклической группой.
ТЕОРЕМА 1.1. Пусть элемент аG имеет конечный порядок k.
Тогда
а ={e, a, a, … , a}
Кроме того, а= e в точности тогда, когда k делит m.
ТЕОРЕМА 1.2. Все подгруппы бесконечной циклической группы G = а исчерпываются единичной подгруппой E={e} и бесконечными подгруппами а для каждого натурального m.
ТЕОРЕМА 1.3.Все подгруппы конечной циклической группы а порядка n исчерпываются циклическими подгруппами а порядка n/m для каждого натурального m, делящего n.
ТЕОРЕМА 1.4. Непустое подмножество H группы G будет подгруппой тогда и только тогда, когда hhH и hH.
2. СМЕЖНЫЕ КЛАССЫ
2.1 Правые и левые смежные классы
Пусть G - группа, H - ее подгруппа и gG.
ОПРЕДЕЛЕНИЕ 2.1.1. Правым смежным классом группы G по подгруппе H называется множество Hg= {hg | hH} всех элементов группы G вида hg , где h “пробегает” все элементы подгруппы H.
Аналогично определяется левый смежный класс gH={gh | hH}.
ЛЕММА 2.1.1. Пусть G - группа, H - подгруппа. Тогда справедливы утверждения:
1) H=He;
2) gHg для каждого gG;
3) если a H, то Ha=H; если b Ha , то Hb=Ha;
4) Ha=Hb тогда и только тогда, когда abH;
5) два смежных класса либо совпадают, либо их пересечение пусто;
6) если H - конечная подгруппа, то | Hg | = | H | для всех gG.
Доказательство
Первые три свойства вытекают из определения правого смежного класса
(4) Если Ha = Hb, то ea = hb, hH и ab= hH. Обратно, если abH, то aHb и Ha=Hb по утверждению 3.
(5) Пусть Ha Hb ? и c Ha Hb. Тогда c=a=b и ab=H. Теперь Ha=Hb по утверждению 4).
(6) Для каждого gG отображение ц: h>hg есть биекция множеств H и Hg. Поэтому | H | = | Hg |
Ч.т.д.
Из свойств 2) и 5) следует, что каждый элемент группы G содержится точно в одном правом смежном классе по подгруппе H. Это свойство позволяет ввести следующее определение.
ОПРЕДЕЛЕНИЕ 2.1.2. Пусть H подгруппа группы G. Подмножество T элементов группы G называется правой трансверсалью подгруппы H в группе G , если T содержит точно один элемент из каждого правого смежного класса группы G по подгруппе H .Итак, если T = { | aI} -правая трансверсаль подгруппы H в группе G, то G = , H при .
Таким образом, справедлива теорема.
ТЕОРЕМА 2.1.1. Если H - подгруппа группы G, то G является подгруппой непересекающихся правых смежных классов по подгруппе H.
Если G - конечная группа, то число различных правых смежных классов по подгруппе H также будет конечно, оно называется индексом подгруппы H в группе G и обозначается через |G : H|. Ясно, что индекс подгруппы H в конечной группе G совпадает с числом элементов в правой трансверсали T подгруппы H, т.е.
|G : H|=|T|=|G|/|H|
ТЕОРЕМА 2.1.2. (Лагранжа) Если H-подгруппа конечной группы G, то | G | = | H || G : H |. В частности, порядок конечной группы делится на порядок каждой своей подгруппы.
Доказательство.
Пусть индекс H в группе G равен n . По теореме 2.1.1. имеем разложение
G=HgHgHg, HgHg при i ? j.
Так как
| Hg| = |H| для всех i, то | G | = | H || G : H |
СЛЕДСТВИЕ 2.1.1. Порядок каждого элемента конечной группы делит порядок всей группы.
Доказательство
Порядок элемента a совпадает с порядком циклической подгруппы а, порожденный этим элементом, см. теорему 1.1. Поэтому, | а | = | a | делит | G |.
Аналогично определяется левая трансверсаль подгруппы H в группе G. Если L={ l | a J } - левая трансверсаль подгруппы H в группе G, то
G=lH, lH lH= при .
Ясно, что индекс подгруппы H в конечной группе G совпадает с числом элементов в левой трансверсали L подгруппы H, т.е. | G : H |=| L |. Для левой трансверсали справедлив аналог теоремы 2.1.1 .Поэтому из теоремы Лагранжа имеем
СЛЕДСТВИЕ 2.1.2. Число левых и число правых смежных классов конечной группы G по подгруппе H совпадают.
ТЕОРЕМА 2.1.3. В группе простого порядка нет неотрицательных подгрупп. В частности, группа простого порядка циклическая.
Доказательство.
Пусть G - конечная группа простого порядка p. Если H - подгруппа группы G, то по теореме Лагранжа | H | делит | G |. Поэтому либо | H |=1 и H - единичная подгруппа, либо | H |= p и H совпадает с группой G. Выберем неединичный элемент а в группе G и рассмотрим циклическую подгруппу а, порожденную этим элементом. Так как a ? e ,то а ? E, поэтому а = G и G - циклическая группа.
ТЕОРЕМА 2.1.4. Пусть H ? K ? G и G - конечная группа. Если T - правая трансверсаль подгруппы H в группе K, а S - правая трансверсаль подгруппы K в группе G, то TS - правая трансверсаль подгруппы H в группе G. В частности, | G : H | = | G : K || K : H |.
Доказательство
Пусть
T={t, … ,t}, S={s, … , s}
Тогда
K=Ht. . . Ht, HtHt, i ?j;
G=Ks. . . Ks, KsKs, i ?j.
Теперь
G =( Ht. . . Ht)s. . . ( Ht. . . Ht)s. (2.1.1)
Предположим, что HtsHts для некоторых натуральных a,b,c и d. Тогда
ts(ts) = tsstH ? K,
поэтому
ss tKt = K, K s=Ks
Но s и s- элементы из правой трансверсали подгруппы K в группе G, поэтому s= s и b = d. Теперь
ts(ts) = ttH, H t=Ht
и a = c. Таким образом, формула (2.1.1.) является разложением группы G по подгруппе H и TS - правая трансверсаль подгруппы H в группе G. Так как индекс подгруппы совпадает с числом элементов в правой трансверсали этой подгруппы, то
|G : H |=| TS |=| T | | S |=| K : H || G : K |
Отметим, что теорема Лагранжа вытекает из теоремы 2.1.4. при H=E.
2.3. Двойные смежные классы
Пусть H и K - подгруппы группы G и g G. Множество
HgK ={ hgk | h H, k K}
называется двойным смежным классом группы G по подгруппам H и K
ЛЕММА 2.3.1. Пусть H и K -подгруппы группы G. Тогда справедливы следующие утверждения:
1) Каждый элемент g G содержится в единственном двойном смежном классе HgK;
2) Два двойных смежных класса по H и K либо совпадают, либо их пересечение пусто;
3) Группа G есть объединение непересекающихся двойных смежных классов по подгруппам H и K;
4) Каждый двойной смежный класс по H и K есть объединение правых смежных классов по H и левых смежных классов по K;
5) Если группа G конечна, то двойной смежный класс HgK содержит
| K: H K | правых смежных классов по H и | H : H K| левых смежных классов по К.
Доказательство.
(1)Так как каждая подгруппа содержит единичный элемент, то
g=ege HgK
Допустим, что gHxK. Тогда g=hxk для некоторых hH, kK и
HgK=H(hxk)K=HxK.
(2) и (3) следуют из (1)
(4)Так как
HgK= =,
то утверждение (4) доказано.
Подсчитаем чис и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.