На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


реферат Использование экспертных систем в управлении

Информация:

Тип работы: реферат. Добавлен: 04.10.2012. Сдан: 2012. Страниц: 7. Уникальность по antiplagiat.ru: < 30%

Описание (план):


 
 
 
 
 
 
 
 
 
 
РЕФЕРАТ
 
По дисциплине: «Информационные технологии управления»
Тема: «Использование  экспертных систем в управлениии »
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Выполнил  студент
Группы  ГМУ 531
Опарин  С.В.
Преподаватель: Перова М.В.
 
 
 
Содержание
 Введение
      Сущность экспертных систем и их преимущества
4
    Применение экспертных систем
6
    Сферы применения экспертных систем
8
    Возможности использования компьютерных информационных систем 
11
    Экспертные системы в области оперативного и управленческого контроля
14
Заключение 
16
Список литературы
17
   
   
   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Введение
Экспертная система - компьютерная система, использующая знания одного или нескольких экспертов, представленные в некотором формальном виде, а также логику принятия решения человеком-экспертом в трудно- или неформализуемых задачах. Экспертные системы способны в сложной ситуации (при недостатке времени, информации или опыта) дать квалифицированную консультацию (совет, подсказку), помогающую специалисту или менеджеру принять обоснованное решение.
Основная идея этих систем состоит в использовании  знаний и опыта специалистов высокой  квалификации в данной предметной области  специалистами менее высокой  квалификации в той же предметной области при решении возникающих  перед ними проблем.
Преимущества  экспертных систем перед человеком-экспертом:
- у них нет  предубеждений и они устойчивы  к различным помехам;
- они не делают  поспешных выводов;
- эти системы  выдают не первое нашедшееся, а оптимальное (по определенным  критериям) решение;
- база знаний  может быть очень и очень  большой. Введенные в машину  один раз, знания сохраняются  навсегда. Человек же имеет ограниченную  базу знаний, и если данные  долгое время не используются, то они забываются и навсегда  теряются.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    Сущность экспертных систем и их преимущества
Экспертные системы (ЭС) возникли как значительный практический результат в применении и развитии методов искусственного интеллекта (ИИ)- совокупности научных дисциплин, изучающих методы решения задач  интеллектуального (творческого) характера  с использованием ЭВМ.
Область ИИ имеет  более чем сорокалетнюю историю  развития. С самого начала в ней  рассматривался ряд весьма сложных  задач, которые, наряду с другими, и  до сих пор являются предметом  исследований: автоматические доказательства теорем, машинный перевод (автоматический перевод с одного естественного  языка на другой), распознавание  изображений и анализ сцен, планирование действий роботов, алгоритмы и стратегии  игр.
ЭС - это набор программ, выполняющий функции эксперта при решении задач из некоторой предметной области. ЭС выдают советы, проводят анализ, дают консультации, ставят диагноз. Практическое применение ЭС на предприятиях способствует эффективности работы и повышению квалификации специалистов.
Главным достоинством экспертных систем является возможность  накопления знаний и сохранение их длительное время. В отличии от человека к любой информации экспертные системы подходят объективно, что улучшает качество проводимой экспертизы. При решении задач, требующих обработки большого объема знаний, возможность возникновения ошибки при переборе очень мала.
При создании ЭС возникает ряд затруднений. Это прежде всего связано с тем, что заказчик не всегда может точно сформулировать свои требования к разрабатываемой системе. Также возможно возникновение трудностей чисто психологического порядка: при создании базы знаний системы эксперт может препятствовать передаче своих знаний, опасаясь, что впоследствии его заменят “машиной”. Но эти страхи не обоснованы, т. к. ЭС не способны обучаться, они не обладают здравым смыслом, интуицией. Но в настоящее время ведутся разработки экспертных систем, реализующих идею самообучения. Также ЭС неприменимы в больших предметных областях и в тех областях, где отсутствуют эксперты.
Экспертная система  состоит из базы знаний (части системы, в которой содержатся факты), подсистемы вывода (множества правил, по которым  осуществляется решение задачи), подсистемы объяснения, подсистемы приобретения знаний и диалогового процессора.
При построении подсистем вывода используют методы решения задач искусственного интеллекта.
Преимущества  экспертных систем перед человеком-экспертом:
- у них нет  предубеждений и они устойчивы  к различным помехам;
- они не делают  поспешных выводов;
- эти системы  выдают не первое нашедшееся, а оптимальное (по определенным  критериям) решение;
- база знаний  может быть очень и очень  большой. Введенные в машину  один раз, знания сохраняются  навсегда. Человек же имеет ограниченную  базу знаний, и если данные  долгое время не используются, то они забываются и навсегда  теряются.
«...первые работы, посвященные экспертным оценкам, появились  в бывшем СССР в конце 60-х гг. Одним  из первых, осознавших перспективность  и значимость технологий экспертного  оценивания, был В.М. Глушков —  известный ученый в области кибернетики.
После того как  были разработаны первые технологии экспертного оценивания и получены с их помощью первые серьезные  результаты, возможности их практического  использования преувеличивались. И  по сей день заблуждения такого рода среди специалистов не редкость.
По инициативе высшего руководства страны в начале 70-х была проведена серия экспериментов для проверки реальных возможностей практического использования методов экспертного оценивания. В качестве объектов для экспертиз были предложены перспективы развития ситуации на Ближнем Востоке область химических разработок и др. Результаты оказались не удовлетворительными, что впоследствии отрицательно сказалось на развитии методов экспертного оценивания в стране.
Необходимо правильно  понимать реальные возможности их использования. Безусловно, далеко не все существующие проблемы могут быть решены с помощью  экспертных оценок. Хотя корректное использование  экспертных технологий во многих случаях  остается единственным реальным способом подготовки и принятия обоснованных управленческих решений».
 
 
 
 
 
 
2. Применение экспертных систем
Экспертные системы (ЭС) - это яркое и быстро прогрессирующее направление в области искусственного интеллекта (ИИ). Причиной повышенного интереса, который ЭС вызывают к себе на протяжении всего своего существования является возможность их применения к решению задач из самых различных областей человеческой деятельности. Пожалуй, не найдется такой проблемной области, в которой не было бы создано ни одной ЭС или по крайней мере, такие попытки не предпринимались бы.
ЭС - это набор программ или программное обеспечение, которое выполняет функции эксперта при решении какой-либо задачи в области его компетенции.
ЭС, как и эксперт-человек, в процессе своей работы оперирует  со знаниями.
Знания о предметной области, необходимые для работы ЭС, определенным образом формализованы  и представлены в памяти ЭВМ в  виде базы знаний, которая может  изменяться и дополняться в процессе развития системы.
ЭС выдают советы, проводят анализ, выполняют классификацию, дают консультации и ставят диагноз. Они ориентированы на решение  задач, обычно требующих проведения экспертизы человеком-специалистом. В  отличие от машинных программ, использующий процедурный анализ, ЭС решают задачи в узкой предметной области (конкретной области экспертизы)на основе дедуктивных рассуждений. Такие системы часто оказываются способными найти решение задач, которые неструктурированны и плохо определены. Они справляются с отсутствием структурированности путем привлечения эвристик, т. е. правил, взятых “с потолка”, что может быть полезным в тех системах, когда недостаток необходимых знаний или времени исключает возможность проведения полного анализа.
Главное достоинство  ЭС - возможность накапливать знания, сохранять их длительное время, обновлять и тем самым обеспечивать относительную независимость конкретной организации от наличия в ней квалифицированных специалистов. Накопление знаний позволяет повышать квалификацию специалистов, работающих на предприятии, используя наилучшие, проверенные решения.
Практическое  применение искусственного интеллекта на машиностроительных предприятиях и  в экономике основано на ЭС, позволяющих  повысить качество и сохранить время  принятия решений, а также способствующих росту эффективности работы и  повышению квалификации специалистов.
Основными отличиями  ЭС от других программных продуктов  являются использование не только данных, но и знаний, а также специального механизма вывода решений и новых знаний на основе имеющихся. Знания в ЭС представляются в такой форме, которая может быть легко обработана на ЭВМ. В ЭС известен алгоритм обработки знаний, а не алгоритм решения задачи.
Поэтому применение алгоритма обработки знаний может  привести к получению такого результата при решении конкретной задачи, который  не был предусмотрен. Более того, алгоритм обработки знаний заранее  неизвестен и строится по ходу решения  задачи на основании эвристических  правил. Решение задачи в ЭС сопровождается понятными пользователю объяснениями, качество получаемых решений обычно не хуже, а иногда и лучше достигаемого специалистами. В системах, основанных на знаниях, правила (или эвристики), по которым решаются проблемы в конкретной предметной области, хранятся в базе знаний. Проблемы ставятся перед системой в виде совокупности фактов, описывающих  некоторую ситуацию, и система  с помощью базы знаний пытается вывести заключение из этих фактов.
Качество ЭС определяется размером и качеством базы знаний (правил или эвристик). Система функционирует  в следующем циклическом режиме: выбор (запрос) данных или результатов анализов, наблюдения, интерпретация результатов, усвоение новой информации, выдвижении с помощью правил временных гипотез и затем выбор следующей порции данных или результатов анализов. Такой процесс продолжается до тех пор, пока не поступит информация, достаточная для окончательного заключения.
В любой момент времени в системе существуют три типа знаний:
- Структурированные  знания - статические знания о предметной области. После того как эти знания выявлены, они уже не изменяются.
- Структурированные  динамические знания- изменяемые знания о предметной области. Они обновляются по мере выявления новой информации.
- Рабочие знания- знания, применяемые для решения  конкретной задачи или проведения  консультации.
Все перечисленные  выше знания хранятся в базе знаний. Для ее построения требуется провести опрос специалистов, являющихся экспертами в конкретной предметной области, а  затем систематизировать, организовать и снабдить эти знания указателями, чтобы впоследствии их можно было легко извлечь из базы знаний.
 
 
 
 
3. Сферы применения экспертных систем
Области применения систем, основанных на знаниях, могут  быть сгруппированы в несколько  основных классов: медицинская диагностика, контроль и управление, диагностика  неисправностей в механических и  электрических устройствах, обучение.
а) Медицинская  диагностика.
Диагностические системы используются для установления связи между нарушениями деятельности организма и их возможными причинами. Наиболее известна диагностическая  система MYCIN, которая предназначена  для диагностики и наблюдения за состоянием больного при менингите  и бактериальных инфекциях. Ее первая версия была разработана в Стенфордском университете в середине 70-х годов. В настоящее время эта система ставит диагноз на уровне врача-специалиста. Она имеет расширенную базу знаний, благодаря чему может применяться и в других областях медицины.
б) Прогнозирование.
Прогнозирующие  системы предсказывают возможные  результаты или события на основе данных о текущем состоянии объекта. Программная система
“Завоевание Уолл-стрита”  может проанализировать конъюнктуру  рынка и с помощью статистических методов алгоритмов разработать  для вас план капиталовложений на перспективу. Она не относится к  числу систем, основанных на знаниях, поскольку использует процедуры  и алгоритмы традиционного программирования. Хотя пока еще отсутствуют ЭС, которые  способны за счет своей информации о конъюнктуре рынка помочь вам  увеличить капитал, прогнозирующие системы уже сегодня могут  предсказывать погоду, урожайность  и поток пассажиров. Даже на персональном компьютере, установив простую систему, основанную на знаниях, вы можете получить местный прогноз погоды.
в) Планирование.
Планирующие системы  предназначены для достижения конкретных целей при решении задач с  большим числом переменных. Дамасская фирма Informat впервые в торговой практике предоставляет в распоряжении покупателей 13 рабочих станций, установленных в холле своего офиса, на которых проводятся бесплатные 15-минутные консультации с целью помочь покупателям выбрать компьютер, в наибольшей степени отвечающий их потребностям и бюджету. Кроме того, компания Boeing применяет ЭС для проектирования космических станций, а также для выявления причин отказов самолетных двигателей и ремонта вертолетов. Экспертная система XCON, созданная фирмой DEC, служит для определения или изменения конфигурации компьютерных систем типа VAX и в соответствии с требованиями покупателя. Фирма DEC разрабатывает более мощную систему XSEL, включающую базу знаний системы XCON, с целью оказания помощи покупателям при выборе вычислительных систем с нужной конфигурацией.
В отличие от XCON система XSEL является интерактивной.
г) Интерпретация.
Интерпретирующие  системы обладают способностью получать определенные заключения на основе результатов  наблюдения. Система PROSPECTOR, одна из наиболее известных систем интерпретирующего  типа, объединяет знания девяти экспертов. Используя сочетания девяти методов  экспертизы, системе удалось обнаружить залежи руды стоимостью в миллион  долларов, причем наличие этих залежей  не предполагал ни один из девяти экспертов. Другая интерпретирующая система- HASP/SIAP. Она определяет местоположение и  типы судов в тихом океане по данным акустических систем слежения.
д) Контроль и  управление.
Системы, основанные на знаниях, могут применятся в качестве интеллектуальных систем контроля и принимать решения, анализируя данные, поступающие от нескольких источников. Такие системы уже работают на атомных электростанциях, управляют воздушным движением и осуществляют медицинский контроль. Они могут быть также полезны при регулировании финансовой деятельности предприятия и оказывать помощь при выработке решений в критических ситуациях.
е) Диагностика  неисправностей в механических и  электрических устройствах.
В этой сфере  системы, основанные на знаниях, незаменимы как при ремонте механических и электрических машин (автомобилей, дизельных локомотивов и т.д.), так и при устранении неисправностей и ошибок в аппаратном и программном  обеспечении компьютеров.
ж) Обучение.
Системы, основанные на знаниях, могут входить составной  частью в компьютерные системы обучения. Система получает информацию о деятельности некоторого объекта
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.