На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


реферат Химические сенсоры

Информация:

Тип работы: реферат. Добавлен: 07.10.2012. Сдан: 2012. Страниц: не полная. Уникальность по antiplagiat.ru: < 30%

Описание (план):


МИНИСТЕРСТВО  ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
«САМАРСКИЙ  ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» 

Химический  факультет 

Кафедра физической химии и хроматографии 

ХИМИЧЕСКИЕ  СЕНСОРЫ
Реферат 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                            

Самара 2011
СОДЕРЖАНИЕ 

1 ВВЕДЕНИЕ 3
2 ИСТОРИЯ РАЗИТИЯ  ХИМИЧЕСКИХ СЕНСОРОВ 4
3 УСТРОЙСТВО  И ПРИНЦИПЫ РАБОТЫ ХИМИЧЕСКИХ СЕНСОРОВ 5
4 ЭЛЕКТРОХИМИЧЕСКИЕ СЕНСОРЫ 7
5 БИОСЕНСОРЫ 10
6 ОПТИЧЕСКИЕ  ХИМИЧЕСКИЕ СЕНСОРЫ 12
7 ЗАКЛЮЧЕНИЕ 15
8 СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1 ВВЕДЕНИЕ
На протяжении едва ли не всей истории аналитической  химии одна из самых важных ее задач  состояла и состоит в том, чтобы  устанавливать связи между составом и каким-либо легко измеряемым свойством и использовать выявленные закономерности, то есть эти связи, для разработки способов определения концентрации и соответствующих устройств. К этим устройствам относятся и датчики, или химические сенсоры, которые дают прямую информацию о химическом составе среды (раствора), в которую погружен датчик, без отбора анализируемой пробы и ее специальной подготовки.
Термин "химический сенсор" появился сравнительно недавно. Успехи в смежных областях (физика твердого тела, микроэлектроника, микропроцессорная техника, материаловедение) привели к появлению нового направления в аналитической химии - химических сенсоров .
Сенсорные анализаторы могут работать автономно, без вмешательства оператора, причем предполагается, что они связаны с системами накопления и автоматизированной обработки информации. Значение химических сенсоров и созданных на их основе анализаторов в контроле состояния среды обитания и охране здоровья человека трудно переоценить. 
 
 
 
 
 
 
 
 
 
 
 
 
 

2 ИСТОРИЯ  РАЗВИТИЯ ХИМИЧЕСКИХ СЕНСОРОВ
К настоящему времени разработано огромное количество самых разнообразных химических сенсоров. Началом истории химических сенсоров можно считать конец XIX – начало XX века.
Началом истории химических сенсоров можно  считать конец XIX – начало XX века. В это время появился прообраз катарометра (1880 г.), который использовался для определения содержания водорода в водяном паре; двухэлектродная ячейка Кольрауша (1885 г.), металлические электроды Нернста (1888 г.) и стеклянный электрод Кремера (1906 г.). В конце XIX - начале XX вв. под сенсорами (слово «сенсор» от английского слова sense – чувство, ощущение) понимали портативные устройства для определения химического состава среды. Типичная конструкция сенсора включала чувствительный элемент и преобразователь [4].
В то время  процедура стандартного химического  анализа представляла собой многостадийный процесс, основанный на химических реакциях. Таким образом, химический анализ был  тогда в полной мере «химическим». А уже в первых сенсорах использовались физические и физико-химические процессы.
Следующий этап в развитии химических сенсоров связан с появлением проточных методов  анализа. В 50-х годах XX в. аналитическое  приборостроение достигло такого уровня, что стало возможным создание проточных методов анализа. В 1952 г. Мартином и Джеймсом был предложен газовый хроматограф. Во всех случаях появилась острая необходимость в детекторах – приборах, которые позволили бы в автоматическом режиме определять концентрацию вещества в потоке газа или жидкости.
Следующим важным моментом в развитии сенсорного анализа можно считать предложение  Бергфелда объединить чувствительную мембрану с затвором полевого транзистора. Это предложение привело к  появлению ионоселективного полевого транзистора. Кроме того, появились перспективы того, что планарная технология, развитая в микроэлектронике, приведет к созданию и массовому производству дешевых сенсоров.
Миниатюрность и относительно небольшие размеры  сенсоров позволяет создавать их наборы в небольшом объеме. Так, на одном полупроводниковом кристалле можно разместить несколько чувствительных элементов или в небольшом объеме несколько самостоятельных сенсоров. Таким образом, появилась возможность создания «лаборатории на чипе», снабженной микропроцессором для обработки результатов анализа .  

3 УСТРОИЙСТВО  И ПРИНЦИПЫ РАБОТЫ ХИМИЧЕСКИХ  СЕНСОРОВ
 Химические  сенсоры представляют собой датчики,  в которых два типа преобразователей  – химический и физический  – находятся в тесном контакте  между собой. 
Химический  преобразователь состоит из слоя чувствительного материала, который формирует селективный отклик на определяемый компонент: он способен отражать присутствие определяемого компонента и изменение его содержания.
Физический  преобразователь – трансдьюсер – преобразует энергию, которая возникает в ходе реакции селективного слоя с определяемым компонентом, в электрический или световой сигнал. Этот сигнал затем измеряется с помощью светочувствительного и/или электронного устройства.
Химические  сенсоры могут работать на принципах химических реакций и на физических принципах. В первом случае аналитический сигнал обусловлен химическим взаимодействием определяемого компонента с чувствительным слоем, который выполняет функцию преобразователя. Во втором случае измеряется физический параметр (коэффициент поглощения или отражения света, масса, проводимость и др.).
Для повышения  избирательности на входном устройстве перед химически чувствительным слоем размещаться мембраны, которые  селективно пропускают частицы определяемого  компонента (ионообменные, гидрофобные и другие пленки). При этом определяемое вещество диффундирует через полупроницаемую мембрану к тонкому слою селективного слоя, в котором формируется аналитический сигнал на компонент.
На основе химических сенсоров разрабатываются сенсорные анализаторы, которые представляют собой приборы для определения какого-либо вещества в заданном диапазоне его концентраций. Заметим, что к химическим сенсорам относятся также биосенсоры.
В зависимости  от характера отклика (первичного сигнала), возникающего в чувствительном слое химических сенсоров, их подразделяют на следующие типы:
• электрохимические (потенциометрические, кулонометрические  и др.);
• электрические (полупроводниковые на основе оксидов  металлов и др.);
• магнитные (датчики Холла, магниторезистивные полупроводниковые элементы и др.);
• термометрические;
• оптические (люминесцентные, спектрофотометрические и др.);
• биосенсоры (на основе различного биологического материала: ферментов, тканей, бактерий, антигенов, рецепторов и др.);
• и  др.  
 

Общая схема функционирования химических сенсоров изображена на рис. 1. 

 
 
 
 
 
 
 
 
 

Рис. 1. Общая  схема функционирования химических сенсоров 
 
 
 
 
 
 
 
 
 
 

4 ЭЕКТРОХИМИЧЕСКИЕ  СЕНСОРЫ
В электрохимическом  сенсоре определяемый компонент  реагирует с чувствительным слоем непосредственно на электроде или в объеме слоя раствора около электрода. Среди электрохимических сенсоров выделяют следующие:
– потенциометрические,
– амперометрические,
– кондуктометрические,
– кулонометрические.
Потенциометрические сенсоры основаны на ионоселективных электродах, которые дают селективный отклик на присутствие определяемых ионов или молекул веществ в растворах. Аналитическим сигналом в них является потенциал, который образуется на поверхности твердого материала, помещенного в раствор, содержащий ионы, которые могут обмениваться с поверхностью. Величина потенциала связана с количеством ионов в растворе. Измерить поверхностный потенциал непосредственно невозможно, однако его можно измерить, используя соответствующую электрохимическую ячейку. В этом и заключается суть потенциометрического метода.
Следует отметить, что для измерения потенциала ячейки необходим нулевой ток. Практически, такое условие недостижимо, поскольку  сам процесс измерения потенциала предполагает наличие небольшого тока. Но поскольку сила тока здесь находится в микроамперном диапазоне, то она незначительно искажает равновесный потенциал на поверхности. Таким образом, предположение о том, что потенциал измеряется по существу в условиях нулевого тока, достаточно корректно.
Существуют  различные виды ионоселективных  электродов. Их классификация основана на различии селективных химических реакций, приводящих к образованию  межфазного потенциала. Специфическое  распознавание потенциометрическим  химическим сенсором достигается благодаря химической реакции на поверхности сенсора. Таким образом, поверхность электрода должна содержать реагент, который химически и обратимо взаимодействует с аналитом. Это достигается благодаря использованию ионоселективных мембран, которые представляют собой поверхность сенсора. В потенциометрических сенсорах используются четыре типа мембран:
– Стеклянные мембраны. Такие мембраны селективны по отношению к таким ионам, как  Н+, Na+ и NH4+.
– Мембраны из плохо растворимых неорганических солей. К мембранам этого типа относятся монокристаллические органической соли, например LaF3, или диски из спрессованного порошка неорганической соли или смеси солей, например, Ag2S/AgCl. Эти мембраны селективны по отношению к таким ионам, как F-, S2- и Сl-.
– Полимерные мембраны с иммобилизованным ионофором. В этих мембранах ионоселективные  комплексообразующие соединения или  ионообменники иммобилизованы в  полимерной матрице, например, в поливинилхлоридной.
– Мембраны с иммобилизованными в геле или химически связанными с гелем ферментами. В мембранах этого типа используются высокоспецифичные реакции, катализируемые ферментами. Фермент содержится внутри матрицы или химически прививается на твердой поверхности.
Благодаря достижениям в области микроэлектроники были разработаны ионоселективные полевые транзисторы. Они представляет собой видоизмененный полевой транзистор с изолированным затвором.
Основная  часть ионоселективного полевого транзистора  – это полупроводник р-типа, в  котором есть два участка, которые представляют собой полупроводники n-типа, называемые, соответственно, истоком и стоком. На поверхность полупроводника наносится металлооксидный изолятор, на который затем вместо металла затвора полевого транзистора наносят ионоселективную мембрану. Сила тока, проходящего между истоком и стоком, определяется входным напряжением.
Исследуемый раствор с погруженным в него электродом сравнения контактирует с ионоселективной мембраной, что  приводит к возникновению на поверхности  мембраны потенциала, который является входным потенциалом, контролирующим силу тока между стоком и истоком. Сила тока зависит от мембранного потенциала, который, таким образом, зависит от активности определяемых ионов в исследуемом растворе. Такие устройства чрезвычайно малы (< 1 мм2) и широко используются для определения разнообразных веществ.
Вольтамперометрия. Данный метод заключается в измерении силы тока в электрохимической ячейке как функции приложенного потенциала.
Многие  вещества окисляются или восстанавливаются  при определенном потенциале, который характерен именно для данного вещества. Если потенциал зафиксирован на величине, соответствующей окислению или восстановлению определяемого вещества, то сила тока прямо связана с его концентрацией. На этом принципе основано действие амперометрических электрохимических сенсоров.
Например, для измерения концентрации растворенного  в воде кислорода используют кислородный  амперометрический датчик. В данном датчике есть золотой или платиновый катод, отделенный от серебряного анода пластиковой оболочкой. Газопроницаемая мембрана, которая располагается на внешней стороне нижней поверхности электрода, пропускает внутрь молекулы небольшого размера. При погружении датчика в исследуемый образец воды молекулы кислорода диффундируют в тонкую пленку электролита, контактирующую с электродами. На катоде поддерживают потенциал -800 мВ относительно серебряного анода, и молекулярный кислород восстанавливается в соответствии с уравнением:
 

Проходящий  через ячейку ток измеряют и по его величине определяют концентрацию растворенного кислорода. Такой датчик необходимо калибровать, используя стандартные растворы с известной концентрацией растворенного кислорода.
Селективность амперометрических химических сенсоров определяется главным образом природой материала поверхности электрода, а, следовательно, и величиной потенциала, при котором происходят электрохимические реакции с участием анализируемого компонента.
Для повышения  селективности отклика поверхность  химических сенсоров модифицируют с помощью специальных соединений, которые осуществляют перенос электронов между электродом и определяемым компонентом. Операция закрепления модификатора-переносчика на поверхности химического сенсора называется иммобилизацией. При этом модификатор перестает быть подвижным, не вымывается анализируемым раствором и может работать в потоке жидкости. Модификация электродов для химических сенсоров удлиняет срок их службы.
Чувствительность  амперометрических электрохимических  сенсоров, как правило, выше потенциометрических.
Кондуктометрические сенсоры. Их действие основано на измерении электропроводности растворов. Такие электрохимические сенсоры используют, в частности, для определения концентрации CO2 в воздухе. В этом случае измеряется электропроводность водного раствора углекислоты, в котором, как правило, в результате ее диссоциации образуются ионы H+ в количествах, зависящих от парциального давления CO2 в воздухе. Различие в электропроводности между «холостым» раствором (без CO2) и анализируемым (с CO2) фиксируется как аналитический сигнал.
Кулонометрические сенсоры. В основе работы этого типа электрохимических сенсоров лежит зависимость тока, протекающего через электрохимическую ячейку при контролируемом расходе анализируемого газа подающего на катод, от концентрации кислорода (при условии практически полной откачки кислорода из потока). Они менее известны, однако в ряде случаев точность измерения ими выше других видов электрохимических химических сенсоров.  
 
 

5 БИОСЕНСОРЫ
Под термином биосенсор понимают устройство, в  котором чувствительный слой содержит биологический материал: ферменты, ткани, бактерии, дрожжи, антигены/антитела, липосомы, органеллы, рецепторы, ДНК. Этот слой непосредственно реагирует на присутствие определяемого компонента и генерирует сигнал, зависящий от концентрации этого компонента.
Конструктивно биосенсор аналогичен остальным  видам химических сенсоров и состоит  из двух преобразователей (биохимического и физического) находящихся в тесном контакте друг с другом. При этом биохимический преобразователь, или биотрансдьюсер, выполняет функцию биологического элемента распознавания, преобразуя определяемый компонент, а точнее, информацию о химических связях в физическое или химическое свойство или сигнал, а физический преобразователь позволяет зарегистрировать этот сигнал. Наличие в устройстве биоматериала с уникальными свойствами позволяет с высокой селективностью определять нужные соединения в сложной по составу смеси, не прибегая к дополнительным операциям, связанным с использованием других реагентов.
В качестве трансдьюсеров могут быть использованы любые из упомянутых в данной статье: электрохимические, спектроскопические, термические, пьезоэлектрические, на поверхностных акустических волнах и интегрально-оптические.
Действие  биосенсоров основано на важнейших  химических реакциях живых организмов: реакции антитело/антиген, фермент/субстрат, рецептор/гормон. Такие реакции используются для получения высоко селективных  и чувствительных биосенсоров на конкретные определяемые вещества. Для иллюстрации высокоселективных реакций, протекающих между биологическими молекулами, предложен механизм, получивший название «ключ-замок».
В биосенсорах  узнающим реагентом обычно является макромолекула, иммобилизованная внутри мембраны, либо химически связанная с поверхностью, которая контактирует с раствором определяемого вещества. Между реагентом и определяемым веществом проходит специфическая химическая реакция. Это может быть либо прямое взаи-модействие реагента с определяемым веществом, как в случае реакции антиген/антитело, либо каталитическое взаимодействие иммобилизованного фермента с определяемым веществом с образованием легко определяемого продукта.
Большой интерес, например, представляют биосенсоры на основе иммобилизованных на мембране микроорганизмов, служащих элементом так называемого микробного сенсора. В частности, амперометрический сенсор на аммиак на основе иммобилизованных нитрифицирующих бактерий и кислородного электрода Кларка используется при решении вопросов охраны окружающей среды.
Следует отметить, что в последнее время  стал активно развиваться и применяться  лихеноиндикационный мониторинг состояния  воздушной среды. Методы лихеноиндикации  основаны на индивидуальной реакции различных видов лишайников к действию загрязнителей атмосферы. Растянутая во времени ответная реакция данных организмов-биоиндикаторов даже на микродозы загрязнителей, проявляющаяся в морфологических изменениях, смене видового состава и невысокая собственная изменчивость обуславливают их широкое использование в качестве биоиндикаторов состояния воздуха. Результаты лихеноиндикационных исследований дают интегральную оценку степени загрязненности воздуха за длительный промежуток времени и могут служить хорошим дополнением к санитарно-гигиенической оценке условий среды обитания. Лишайники очень чувствительны к химическим загрязнениям и могут быть хорошими индикаторами состояния окружающей среды как сами по себе, так и в качестве некоторого чувствительного элемента биосенсоров.
Если  принять во внимание все разнообразие ферментов, присутствующих и действующих  в живых организмах и являющихся потенциальными биологическими преобразователями, то существующее сегодня число конструкций  биосенсоров может быть увеличено в десятки и даже сотни раз. Основные трудности связаны с градуировкой биосенсоров и надежностью их показаний. Для улучшения последнего показателя, в частности, может быть использована мультисенсорная система, состоящая из ряда биочипов.
В целом  метрологические характеристики биосенсоров вполне приемлемы. Относительное стандартное отклонение определяемой концентрации не хуже 10-12%, при этом нижняя граница определяемых содержаний достигает 10-10-10-15 моль/л. Некоторые биосенсоры работают по принципу «да-нет», что приемлемо, в случае определения присутствия ультра малых количеств высокотоксичных веществ в объектах окружающей среды. Если определяемые компоненты находятся в сложной смеси или матрице, или близки по своим свойствам, то при анализе используются хроматографические методы разделения.
Отметим, что биосенсоры широко используются не только в химии, но также в биотехнологии, медицине и экологии. Перспективно их применение в электронной промышленности и системах безопасности, например, на транспорте (в первую очередь – на авиатранспорте), в угольной промышленности и др. Многочисленные аварии, катастрофы и теракты последних лет настоятельно требуют ускоренного внедрения перспективных научных разработок в критически важных областях жизни.  
 
 

6 ОПТИЧЕСКИЕ ХИМИЧЕСКИЕ СЕНСОРЫ
Оптические  химические сенсоры являются одной  из важнейших категорий химических сенсоров. В зависимости от типа оптических сенсоров их действие основано на следующих принципах:
? поглощения света (абсорбция);
? отражения  первичного (падающего) светового потока;
? люминесценции.
При этом используются зависимости оптических свойств сред (коэффициентов преломления, отражения и др.) от концентраций определяемых веществ.
Чаще  всего оптические химические сенсоры  классифицируются в зависимости от типа принципов их действия: датчик поглощения, датчик отражения, датчик люминесценции, комбинированный датчик и др.
Строение  оптических химических сенсоров. В оптических химических сенсорах, работающих на физических принципах аналитический сигнал обусловлен не химическим взаимодействием определяемого компонента с чувствительным слоем, который выполняет функцию преобразователя, а измеряемым физическим параметром: интенсивностью поглощения, отражения или люминесценции света и т.д.
Оптоволоконный  сенсор обычно выполнен из кварцевого стекла, пластика или стекла и окружен оптическим изолятором – оболочкой, имеющей более низкий показатель преломления, чем сердцевина. Пластиковые и стеклянные волокна гораздо дешевле, чем волокна из кварцевого стекла, однако область применения кварцевых волокон существенно шире: они могут быть использованы в ультрафиолетовой области спектра, там, где остальные материалы поглощают излучение.
Используют  как одиночные оптические волокна, так и пучки из многих оптических волокон. Оптические волокна позволяют осуществить передачу оптических сигналов на очень большие расстояния и, следовательно, идеальны дня тех случаев, когда объект анализа удален от исследователя. Кроме того, их можно изогнуть (однако угол изгиба не должен быть слишком острым), а поэтому их можно использовать в самых разнообразных оптических светочувствительных устройствах, таких, как проточные ячейки для непрерывного мониторинга.
Интегрально-оптический сенсор. Интегрально-оптические химические датчики по-нашему мнению являются наиболее перспективными среди оптических химических сенсоров. Принцип работы интегрально-оптических химических датчиков абсорбционного типа основан на регистрации изменения интенсивности лазерного излучения волноводной моды, распространяющейся через исследуемую газообразную или жидкую среду (находящуюся рядом с датчиком), на длинах волн, характерных для данного вещества.
На рис. 2 схематически показан поперечный разрез простого трехслойного интегрально-оптического  тонкопленочного волноводного химического сенсора. Он образован тремя средами: воздухом 1, пленкой 2 и подложкой 3 с показателями преломления сред , и соответственно.
В оптико-лучевом  приближении лазерное излучение, введенное  в регулярный волновод, распространяется вдоль волновода в виде плоских волн, двигающихся по зигзагообразному пути и испытывающих полное внутреннее отражение на границах волновода . Оптическая энергия моды не ослабевает в результате интерференции волн отраженных на границах волновода, если полное изменение фазы в вертикальном направлении кратно 2?. В этом случае говорят, что выполнено резонансное условие. Напряженность поля волноводной моды в волноводном слое 2 имеет синусоидальное распределение, а в средах 1 и 3 экспоненциальное. Обычно используются локализованные ТЕ-моды, поле которых экспоненциально затухает в воздухе и подложке по мере удаления от волноводного слоя 2.
Если  рядом с волноводом в воздухе  появится газ (или жидкость – на границе волноводный слой-воздух), у которого есть характерная линия  поглощения, совпадающая с длиной волны лазерного излучения, то будет наблюдаться затухание мощности волноводной моды. Именно этот эффект и лежит в основе работы интегрально-оптического химического датчика абсорбционного типа.  

 
 
 
 
 
 
 
 
Рис.2 Интегрально-оптический волноводный химический сенсор.
Оптический  волновод образован средами 1–3:
1 – покровный  слой (воздух), 2 – волноводный слой (пленка); 3 – подложка; 4, 7 – вводимое  и выводимое излучение лазера; 5, 6 – призмы ввода и вывода  лазерного излучения; 8 – направляемая волноводная мода.
Волноводный слой 2 может изготавливаться из полистирола, желатины и ряда других оптически прозрачных материалов. Например, слой из Та2О5 наносится на подложку с помощью катодного распыления. Интегрально-оптический датчик может быть создан на основе диффузного волновода, изготовленного легированием PbO2 в стеклянную подложку. Толщина пленки (волноводного слоя 2), как правило, сравнима с длиной волны монохроматического света ? и в видимом диапазоне обычно не превышает 1-5 микрометров.
Подложка 3 волновода обычно представляла собой  пластинку толщиной несколько миллиметров, например, сделанную из стекла с  высокой чистотой обработки поверхности (среднеквадратичная величина шероховатости  поверхности менее 100 A). Длина сенсорной  ячейки интегрально-оптического химического датчика определяется расстоянием между вводом и выводом излучения через призменные устройства связи и может варьироваться от нескольких миллиметров до метров. Для ввода и вывода лазерного излучения используются призмы с показателем преломления большим, чем у сред 1-3, образующих волновод.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7 ЗАКЛЮЧЕНИЕ
 Загрязнение  окружающей среды и в первую  очередь атмосферы вредными химическими  веществами является в настоящее  время самым мощным и постоянно  действующим фактором воздействия на здоровье человека и окружающую среду. Задачи контроля состояния окружающей среды требуют разработки и создания датчиков для определения различных параметров, в частности температуры, давления, влажности, концентрации химических веществ и др.
Аналогичные задачи актуальны также и в  таких областях как химия, биотехнология  и медицина. Несомненно, перспективно применение химических сенсоров в электронной  промышленности и в системах безопасности, например, на авиатранспорте, в угольной промышленности, на военных и других, критически важных объектах.
Существующий  в последние годы и все возрастающий интерес к разработке и использованию  оптических химических сенсоров связан со следующими их наиболее важными  преимуществами:  

? высокая  чувствительность;
? высокая  скорость отклика;
? возможность  бесконтактного обнаружения;
? высокая  помехозащищенность;
? нечувствительны  к электромагнитным полям (не оптической частоты);
? нечувствительны  к радиационным полям;
? способность  передавать аналитический сигнал без искажения на большие расстояния (например, по оптоволокну);
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.