На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


доклад Жизненный путь звезды. Диаграмма Герцшпрунга - Рассела. Нейтронные звезды. Черные дыры

Информация:

Тип работы: доклад. Добавлен: 08.10.2012. Сдан: 2012. Страниц: 3. Уникальность по antiplagiat.ru: < 30%

Описание (план):


?4.       Жизненный путь звезды. Диаграмма Герцшпрунга - Рассела. Нейтронные звезды. Черные дыры.
  Каждая звезда - это массивный газовый шар, излучающий собственный свет, в отличии от планет, которые светят отраженным светом изненный путь звезды. Диаграмма Герцшпрунга - Рассела. Нейтронные звезды. Черные дыры.
Звезда начинает свою жизнь как холодное разрежённое облако межзвёздного газа, сжимающееся под действием собственного тяготения и постепенно принимающее форму шара. При сжатии энергия гравитации переходит в тепло, и температура объекта возрастает. Когда температура в центре достигает 15-20 миллионов К, начинаются термоядерные реакции и сжатие прекращается. Объект становится полноценной звездой. Первая стадия жизни звезды подобна солнечной — в ней доминируют реакции водородного цикла. В таком состоянии он пребывает бо?льшую часть своей жизни, находясь на главной последовательности диаграммы Герцшпрунга — Расселла, пока не закончатся запасы топлива в его ядре. Когда в центре звезды весь водород превращается в гелий, образуется гелиевое ядро, а термоядерное горение водорода продолжается на его периферии.

Диаграмма Герцшпрунга — Рассела показывает зависимость между абсолютной звёздной величиной, светимостью, спектральным классом и температурой поверхности звезды. 
Диаграмма даёт возможность (хотя и не очень точно) найти абсолютную величину по спектральному классу. Особенно для спектральных классов O—F. Для поздних классов это осложняется необходимостью сделать выбор между гигантом и карликом. Однако определённые различия в интенсивности некоторых линий позволяют уверенно сделать этот выбор.
Известно, что в некоторых сверхновых сильная гравитация в недрах сверхгиганта заставляет электроны поглотиться атомным ядром, где они, сливаясь с протонами, образуют нейтроны. Этот процесс называется нейтронизацией. Электромагнитные силы, разделяющие близлежащие ядра, исчезают. Ядро звезды теперь представляет собой плотный шар из атомных ядер и отдельных нейтронов.
Такие звёзды, известные, как нейтронные звёзды, чрезвычайно малы — не более размера крупного города, и имеют невообразимо высокую плотность. Период их обращения становится чрезвычайно мал по мере уменьшения размера звезды (благодаря сохранению момента импульса). Некоторые совершают 600 оборотов в секунду. 
Чёрные дыры звёздных масс образуются как конечный этап жизни звезды, после полного выгорания термоядерного топлива и прекращения реакции звезда теоретически должна начать остывать, что приведёт к уменьшению внутреннего давления и сжатию звезды под действием гравитации. Сжатие может остановиться на определённом этапе, а может перейти в стремительный гравитационный коллапс. В зависимости от массы звезды и вращательного момента возможны следующие конечные состояния:
• Погасшая очень плотная звезда, состоящая в основном, в зависимости от массы, из гелия, углерода, кислорода, неона, магния, кремния или железа. Такие остатки называют белыми карликами
• Нейтронная звезда, масса которой ограничена пределом.
• Чёрная дыра.
Чёрная дыра? — область в пространстве-времени, гравитационное притяжение которой настолько велико, что покинуть её не могут даже объекты, движущиеся со скоростью света (в том числе и кванты самого света).
7. Концепция происхождения жизни на Земле.
В разное время и в разных культурах рассматривались следующие идеи:
Креационизм. Согласно этой религиозной концепции, имеющей древние корни, всё существующее во Вселенной, в том числе жизнь, было создано единой Силой — Творцом в результате одного или нескольких актов сверхъестественного творения в прошлом. Организмы, населяющие сегодня Землю, происходят от сотворенных по отдельности основных типов живых существ. Сотворённые виды были с самого начала превосходно организованы и наделены способностью к некоторой изменчивости в определенных границах (микроэволюция).
Самозарождение из неживого.
На протяжении тысячелетий люди полагали, что источником спонтанного зарождения служат либо неорганические соединения, либо гниющие органические остатки (концепция абиогенеза). Эта гипотеза была распространена в Древнем Китае, Вавилоне и Египте в качестве альтернативы креационизму, с которым она сосуществовала. На протяжении столь длительной истории эта гипотеза видоизменялась, но по-прежнему оставалась ошибочной. Аристотель, которого часто провозглашают основателем биологии, писал, что лягушки и насекомые заводятся в сырой почве. В Средние века многим «удавалось» наблюдать зарождение разнообразных живых существ, таких как насекомые, черви, угри, мыши, в разлагающихся или гниющих остатках организмов (Франческо Рэди 1686г.).
Гипотеза стационарного состояния (жизнь существовала всегда). Согласно этой гипотезе Земля никогда не возникала, а существовала вечно; она всегда была способна поддерживать жизнь, а если и изменялась, то очень мало; виды также существовали всегда. Эту гипотезу называют иногда гипотезой этернизма (от лат. eternus — вечный). Это представление соответствует концепции вечной несотворенной Вселенной, характерной для восточных религий, таких как индуизм и буддизм. В контексте современных астрономических знаний эта гипотеза не рассматривается как научная.
Гипотеза панспермии (жизнь занесена на Землю с других планет).
Эта гипотеза примыкает к гипотезе стационарного состояния. Её приверженцы поддерживают мысль о вечном существовании жизни и выдвигают идею о внеземном ее происхождении. Одним из первых идею о космическом (внеземном) происхождении жизни высказал немецкий ученый Г. Рихтер в 1865 г. Согласно Рихтеру жизнь на Земле не возникла из неорганических веществ, а была занесена с других планет. Современные приверженцы концепции панспермии (в числе которых — лауреат Нобелевской премии английский биофизик Ф. Крик) считают, что жизнь на Землю занесена случайно или преднамеренно космическими пришельцами. К гипотезе панспермии примыкает точка зрения астрономов Ч. Викрамасингха (Шри-Ланка) и Ф. Хойла (Великобритания). Они считают, что в космическом пространстве, в основном в газовых и пылевых облаках, в большом количестве присутствуют микроорганизмы, где они, по мнению ученых, и образуются. Далее эти микроорганизмы захватываются кометами, которые затем, проходя вблизи планет, «сеют зародыши жизни».
Биохимическая теория
Первую научную теорию относительно происхождения живых организмов на Земле создал советский биохимик А.И. Опарин (1894–1980). В 1924 г. он опубликовал работы, в которых изложил представления о том, как могла возникнуть жизнь на Земле. Согласно этой теории, жизнь возникла в специфических условиях древней Земли и рассматривается Опариным как закономерный результат химической эволюции соединений углерода во Вселенной.
 По Опарину, процесс, приведший к возникновению жизни на Земле, может быть разделен на три этапа:
?                    возникновение органических веществ;
?                    образование из более простых органических веществ биополимеров (белков, нуклеиновых кислот, полисахаридов, липидов и др.);
?                    возникновение примитивных самовоспроизводящихся организмов.
Теория биохимической эволюции имеет наибольшее количество сторонников среди современных учёных. Земля возникла около пяти миллиардов лет назад; первоначально температура её поверхности была очень высокой (до нескольких тысяч градусов). По мере её остывания образовались твёрдая поверхность (земная кора — литосфера).
8. Происхождение жизни на Земле: предбиологическая химическая эволюция
Возраст планет Солнечной системы — примерно 4,6 миллиарда лет— определен учеными в результате изучения продуктов радиоактивного распада элементов, обнаруженных в метеоритах. Представления о возможной химической (предбиологической, пребиотической, молекулярной) эволюции как новой предметной области химии зародились на рубеже XIX–XX вв. в связи с логической необходимостью объяснить связанность между физическими космогоническими теориями-гипотезами Канта (1724-1804) и Лапласа (1749-1827) и биологическими эволюционными учениями Ламарка (1744-1829) и Дарвина (1809-1882). Эволюционные идеи в химии впервые возникли под влиянием космогонических гипотез в несколько большей степени, чем под влиянием эволюционного учения в биологии. Поэтому в первую очередь в химии (и геохимии) прозвучали идеи о неорганической эволюции и образовании химических элементов в космических условиях. В частности, такие идеи в 70-е гг. XIX в. выдвинул Локьер. Позднее, в 80-е гг., Крукс высказал мысль об эволюции химических элементов в речи «О происхождении химических элементов» (1886). Собственно термин «химическая эволюция», обозначающий именно эволюцию атомно-молекулярных систем в естественноисторических условиях, был введен Муром в 1913 г.
В результате в естествознании обозначились следующие варианты объяснения перехода от простых атомно-молекулярных образований до саморегулирующихся предбиологическихсистем:
1) возникновение простейших живых организмов в результате чистой случайности;
2) возникновение живых организмов в результате связи необходимости и случайности (т.е. усложнение молекулярных систем) может происходить только до определенногопредбиологического уровня, но переход к живому организму происходит скачком при благоприятном стечении обстоятельств;
3) возникновение жизни в результате последовательных процессов самоорганизации в молекулярных открытых термодинамических системах вплоть до образования живых организмов (истоками этого направления в конкретных формулировках являются работы И.Р. Пригожина и его школы);
4) возникновение жизни на предбиологическом этапе в результате механизма естественного отбора для физико-химических макромолекулярных образований, коллоидных систем и т.п.;
5) возникновение жизни из простейших атомно-молекулярных систем в результате конструктивной деятельности Высшего Начала, Мирового Разума, Бога.
Начнем с анализа самых крайних вариантов, при принятии которых этап химической (предбиологической) эволюции исключается.
6. Геологическая эволюция Земли. Формирование и эволюция литосферы, гидросферы, атмосферы, магнитосферы и биосферы.
Эволюция Земли делится на раннюю историю и геологическую историю. Под ранней историей подразумевается катархей. Под геологической же историей понимается все остальное время, от архея (3 млрд.лет до н.э., 0.00-20.00 час.) до современной эпохи. Как только температура опустилась ниже 100° С, состояние воды, которая находилась в атмосфере в виде горячего пара, изменилось. Водяные пары атмосферы, а в них была сосредоточена практически вся гидросфера Земли, почти целиком превратились в жидкость, наиболее активное состояние воды по сравнению с ее газовой и твердой фазами. Сухая до того времени Земля стала необычайно обводненной. Сформировались поверхностный и грунтовый стоки, возникли водоемы, и, наконец, океаны. Начался круговорот воды в природе.
На заре геологической истории существовали обширные водоемы - моря и, вероятно, какие-то первоначальные океаны. В 1973 г. геологи Оксфордского университета обнаружили в юго-западной части Гренландии бурый железняк возрастом 3,76 млрд. лет (± 70 млн. лет). Бурый железняк - осадочная порода, сформировавшаяся в водном бассейне. Еще раньше те же геологи вместе с сотрудниками Управления геологической съемки Гренландии обнаружили в 1971 г. метаморфизованные осадочные породы возрастом 3,98 млрд. лет. Факт обнаружения осадочных пород такого древнего возраста трудно переоценить. Это означает, что временной рубеж между ранней и геологической историей проходит где-то около 4 млрд. лет назад. Следовательно, на всю раннюю историю Земли остается всего 0,6 млрд. лет. Если помимо внешней сферы Земли расплавлялась и центральная область, то на планете могли образоваться океаны, близкие по объему современным. После охлаждения земной поверхности до температуры ниже 100° С на ней образовалась огромная масса жидкой воды, которая представляла собой не простое скопление неподвижных вод, а находящихся в активном глобальном круговороте. Несмотря на эволюцию этого круговорота в ходе времени, основные особенности его сохранились неизменными. В структурном отношении круговорот, как и в настоящее время, распадался на звенья: атмосферное (испарение, перенос влаги, осадки), литосферное (поверхностный и подземный стоки) и океаническое. В процессе функционирования круговорота воды в природе происходит поглощение солнечной энергии и распределение ее по земному шару. Вода благодаря своей необычайной подвижности и химической активности вступает во взаимодействие с природными компонентами, способствуя их взаимосвязям, чем и обеспечивает формирование того глобального природного комплекса, который в настоящее время называется географической оболочкой.
5.       Формирование и эволюция солнечной системы. Ее состав.
Со?лнечная систе?ма — планетная система, включающая в себя центральную звезду — Солнце — и все естественные космические объекты, вращающиеся вокруг неё. Согласно общепринятой в настоящее время гипотезе, формирование Солнечной системы началось около 4,6 млрд лет назад с гравитационного коллапса небольшой части гигантского межзвёздного газопылевого облака. Это начальное облако было, вероятно, размером в несколько световых лет и являлось прародителем для нескольких звёзд. В процессе гравитационного сжатия размеры газопылевого облака уменьшались и, в силу закона сохранения углового момента, росла скорость вращения облака. Центр, где собралась большая часть массы, становился всё более и более горячим, чем окружающий диск. Из-за вращения скорости сжатия облака параллельно и перпендикулярно оси вращения различались, что привело к уплощению облака и формированию характерного протопланетного диска диаметром примерно 200 а. е. и горячей, плотнойпротозвездой в центре. Полагают, что в этой точке эволюции Солнце было звездой типа T Тельца. Изучение звёзд типа T Тельца показывают, что они часто сопровождаются протопланетными дисками с массами 0,001—0,1 солнечной массы, с подавляющим процентом массы туманности, сосредоточенным непосредственно в звезде. Планеты сформировались аккрецией из этого диска. В течение 50 млн лет давление и плотность водорода в центре протозвезды стали достаточно большими для начала термоядерной реакции. Температура, скорость реакции, давление и плотность увеличились, пока не было достигнуто гидростатическое равновесие, с тепловой энергией, противостоящей силе гравитационного сжатия. На этом этапе Солнце стало полноценной звездой главной последовательности. Солнечная система, насколько известно сегодня, просуществует, пока Солнце не начнёт развиваться вне главной последовательности диаграммы Герцшпрунга — Рассела. Поскольку Солнце сжигает запасы водородного топлива, выделяющаяся энергия, поддерживающая ядро, имеет тенденцию к исчерпанию, заставляя Солнце сжиматься. Это увеличивает давление в его недрах и нагревает ядро, таким образом ускоряя сжигание топлива. В результате Солнце становится ярче на примерно десять процентов каждые 1,1 млрд лет. Через приблизительно 5,4 млрд лет с настоящего времени, водород в ядре Солнца будет полностью преобразован в гелий, что завершит фазу главной последовательности. В это время внешние слои Солнца расширятся примерно в 260 раз — Солнце станет красным гигантом. Из-за чрезвычайно увеличившейся площади поверхности, она будет гораздо более прохладной, чем при нахождении на главной последовательности (2600 К). В конечном счёте внешние слои Солнца будут выброшены мощным взрывом в окружающее пространство, образовав планетарную туманность, в центре которой останется лишь небольшое звёздное ядро — белый карлик, необычно плотный объект в половину первоначальной массы Солнца, но размером только с Землю. Эта туманность возвратит часть материала, который сформировал Солнце, в межзвёздную среду. Ее состав. В состав Солнечной системы входят: Солнце,  Межпланетная среда, Внутренняя Солнечная система, Планеты земной группы: Меркурий, Венера,. Земля, спутник Земли - Луна, Марс, спутники Марса. Пояс астероидов: Церера. Внешняя Солнечная система: Планеты-гиганты: Юпитер, спутники Юпитера, кольца Юпитера, Сатурн, спутники Сатурна, кольца Сатурна,  Уран, спутники Урана, кольца Урана, Нептун, спутники Нептуна, кольца Нептуна, Кометы, Кентавры, Транснептуновые объекты, Пояс Койпера, Плутон, спутники Плутона, Хаумеа, спутники Хаумеа, Макемаке, Рассеянный диск, Эрида, спутник Эриды, Отдалённые области: Гелиосфера, Облако Оорта, Седна.
3. Эволюция звезд. Взрывы “сверхновых”. Источники энергии звезд.

Звёздная эволюция — последовательность из
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.