На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Реферат Основная функционально полная система логических функций. Законы алгебры логики в основной функционально полной системе и их следствия. Переместительный и распределительный законы. Закон инверсии (правило Де Моргана). Системы логических функций.

Информация:

Тип работы: Реферат. Предмет: Математика. Добавлен: 17.11.2008. Сдан: 2008. Уникальность по antiplagiat.ru: --.

Описание (план):


Министерство образования Республики Беларусь

Учреждение образования

«Белорусский государственный университет

информатики и радиоэлектроники»

кафедра ЭТТ

РЕФЕРАТ

На тему:

«Функционально полные системы логических функций. Алгебраический подход»

МИНСК, 2008

Из множества функционально полных наборов рассмотрим только те, которые имеют наибольшее практическое значение.

1. Основная функционально полная система логических функций. Наибольшее распространение получил набор, в состав которого входят три логические функции:
f10 - инверсия (логическая связь НЕ, логическое отрицание);
f1 - конъюнкция (логическая связь И, логическое умножение),
f7 - дизъюнкция (логическая связь ИЛИ, логическое сложение).
Этот набор получил название функционально полной системы логических функций (ОФПС). Из теоремы о функциональной полноте следует, что основная функционально полная система логических функций является избыточной, так как условиям теоремы отвечают наборы функций f10 и f1 или f10 и f7. Свойства этих функций были рассмотрены ранее.
Из определения представления переключательной функции в виде дизъюнктивной или конъюнктивной нормальной формы следует, что эти представления реализуются в основной функционально полной системе логических функций.
2. Законы алгебры логики в ОФПС и их следствия. В алгебре логики имеются четыре основных за-кона, регламентирующих порядок производства операций НЕ, И, ИЛИ в любом логическом выражении:
переместительный (коммутативный);
сочетательный (ассоциативный);
распределительный (дистрибутивный);
инверсии (правило Де Моргана).
Переместительный закон. Этот закон справедлив как для дизъюнкции, так и для конъюнкции:
x1 x2 = x2 x1; x1 x2 = x2 x1. (1)
Справедливость выражения (5.1) нетрудно доказать простой подста-новкой в него различных значений x1 и x2. Поскольку любую переста-новку большего количества слагаемых можно свести к последователь-ности перестановок слагаемых в отдельных парах, то переместитель-ный закон будет справедлив при любом числе слагаемых.
Сочетательный закон. Этот закон, так же как и переместительный, является симметричным, т. е. справедливым и для дизъюнкции, и для конъюнкции:
x1 x2 x3 = x1(x2 x3) = (x1 x2)x3= x2( x1 x3); (2)
x1 x2 x3 = x1x2 x3) = (x1 x2)x3= x2( x1 x3).
Доказательство этого закона также не представляет никаких труд-ностей и может быть выполнено простой подстановкой.
Распределительный закон. В отличие от обычной алгебры алгебра логики симметрична. В ней справедливы два распределительных закона:
для логического умножения относительно логического сложения (рас-пределительный закон 1-го рода) и для логического сложения относи-тельно логического умножения (распределительный закон 2-го рода).
1. Распределительный закон 1-го рода записывается следующим образом:
(x1x2)x3=(x1x3) ( x2 x3) . (3)
Справедливость формулы (5.3), а также и ее более общего случая, когда в скобках заключена сумма любого количества слагаемых, можно доказать путем установления идентичности условий обращения в 0 или 1 ее левой и правой частей. Условием обращения в нуль левой части выражения (5.3) состоит в том, чтобы нулю равнялся либо один аргумент х3, либо одновременно аргументы x1 и x2. Условия обращения в нуль правой части выражения (5.1) такие же. Следовательно, распределительный закон 1-го рода справедлив для алгебры логики.
2. Распределительный закон 2-го рода имеет вид
(x1x2)x3=(x1x3) ( x2x3). (4)
Cправедливость формулы (4) (при любом количестве аргументов) нетрудно доказать посредством установления идентичности условий обращения обеих ее частей в единицу.
Закон инверсии (правило Де Моргана). Этот закон, так же как и все предыдущие, симметричен относительно логических сложения и умножения.
1. Отрицание логической суммы нескольких аргументов равно ло-гическому произведению отрицаний этих же аргументов:
(5)
Доказательство закона не представляет трудностей, поскольку условие обращения в нуль как левой, так и правой частей выражения (5) состоит в том, чтобы был истинным хотя бы один аргумент.
2. Отрицание логического произведения нескольких аргументов равно логической сумме отрицаний этих же аргументов:
(6)
Справедливость этого закона следует из того, что условие обращения в единицу обеих частей формулы (6) заключается в том, чтобы был ложным хотя бы один аргумент.
Следствия из законов алгебры логики. Из доказанных выше за-конов можно вывести ряд следствий, которые сформулируем в виде правил.
Правило выполнения совместных логических действий (правило старшинства логических функций). При решении логических задач приходится встречаться с выражениями, содержащими действия отри-цания, конъюнкции и дизъюнкции в любом сочетании. По аналогии с арифметическими действиями будем считать отрицание логическим действием первой ступени (старшей логической опера-цией), конъюнкцию -- действием второй ступени, а дизъюнкцию -- действием третьей ступени (младшей логической операцией).
Старшинство операции инверсии вытекает из закона инверсии, в соот-ветствии с которым логическая сумма отрицаний некоторых аргументов не равна отрицанию их суммы (это справедливо и для логического произведения). Это значит, что ни операцию дизъюнкции, ни операцию конъюнкции нельзя проводить, игнорируя знак отрицания над каким-либо из логических аргументов, т. е. операцию отрицания надо про-водить в первую очередь.
Относительно операций логического сложения и умножения на основании симметричности законов алгебры логики можно сказать, что они «равноправны». Из этого следует, что можно условиться считать более старшей операцией любую из них, но, приняв какое-либо усло-вие, надо придерживаться его все время. На практике оказалось удоб-нее считать более старшей операцию логического умножения, так как это соответствует правилам обычной алгебры и для нас более привычно.
На основе изложенного можно сформулировать следующее пра-вило выполнения совместных логических действий: если в логическом выражении встречаются только действия одной и той же ступени, то их принято выполнять в том порядке, в котором они написаны; если в логическом выражении встречаются действия различных ступеней, то сначала принято выполнять действия первой ступени, затем -- второй, и только после этого -- третьей. Всякое отклонение от этого порядка должно быть обозначено скобками.
Правило склеивания. Прежде чем сформулировать само правило, введем некоторые новые понятия. Если имеется некоторый конечный набор логических аргументов x1, x2, … xn, то логическое произведение любого их числа называется элементарным в том случае, когда сомножите-лями в нем являются либо одиночные аргументы, либо отрицания одиночных аргументов. Так, например, f11, х2, x3, х4)= х1 х2 x3х4 -- элементарное произведение (элементарная конъюнкция); --не является элементарным про-изведением.
Cимвол любого аргумента в элементарной конъюнк-ции может встречаться только один раз, поскольку произведение аргу-мента самого на себя равно этому же аргументу, а произведение аргу-мента на свое отрицание равно нулю. Количество сомножителей в элементарной конъюнкции называется ее рангом.
Два элементарных произведения одинакового ранга r называются соседними, если они являются функциями одних и тех же аргументов и отличаются только знаком отрицания (инверсии) одного из сомножи-телей. Например, элементарные конъюнкции
f11, х2, x3, х4)= х1 х2 x3х4 и f31, х2, x3, х4)=
являются соседними, так как отличаются только одной инверсией в переменной x2, а элементарные конъюнкции
f31, х2, x3, х4)= и f41, х2, x3, х4)=
соседними не являются.
Правило склеивания для элементар-ных конъюнкций может быть сформулировано следующим образом: логическую сумму двух соседних произведений неко-торого ранга r можно заменить одним элементарным произведением ранга r-1,< и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.