Здесь можно найти образцы любых учебных материалов, т.е. получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ и рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


реферат Изучение динамики общественных явлений

Информация:

Тип работы: реферат. Добавлен: 09.10.2012. Сдан: 2011. Страниц: 5. Уникальность по antiplagiat.ru: < 30%

Описание (план):


   Глава 5. ИЗУЧЕНИЕ ДИНАМИКИ ОБЩЕСТВЕННЫХ ЯВЛЕНИЙ

 
   5.1. Ряды динамики. Классификация 

         Ряд динамики, хронологический  ряд, динамический ряд, временной ряд  – это последовательность упорядоченных  во времени числовых показателей, характеризующих  уровень развития изучаемого явления. Всякий ряд динамики включает, следовательно, два обязательных элемента: во-первых, время и, во-вторых, конкретное значение показателя, или уровень ряда.
         Ряды динамики различаются  по следующим признакам.
         1. По времени – моментные и интервальные ряды. Интервальный ряд динамики – последовательность, в которой уровень явления относится к результату, накопленному или вновь произведенному за определенный интервал времени. Таковы, например, ряды показателей объема продукции по месяцам года, количества отработанных человеко-дней по отдельным периодам и т.д.
   Если  же уровень ряда показывает фактическое  наличие (или состояние) изучаемого явления в конкретный момент времени, то совокупность уровней образует моментный ряд динамики. Примерами моментных рядов могут быть последовательности показателей численности населения на начало года, величины запаса какого-либо материала на начало периода и т.д. Важное аналитическое отличие моментных рядов от интервальных состоит в том, что сумма уровней интервального ряда дает вполне реальный показатель – общий выпуск продукции за год, общие затраты рабочего времени, общий объем продаж акций и т.д., сумма же уровней моментного ряда, хотя иногда и подсчитывается, но реального содержания, как правило, не имеет.
   2. По форме представления уровней — ряды абсолютных, относительных и средних величин (табл. 5.1 —- 5.3).
   3. По расстоянию между датами или интервалам времени выделяют полные и неполные хронологические ряды.
   Полные  ряды динамики имеют место, когда даты регистрации или окончания периодов следуют друг за другом с равными интервалами. Это равноотстоящие ряды динамики (см. табл.5.1 и 5.2). Неполные — когда принцип равных интервалов не соблюдается (см. табл. 5.3).
   4. По числу показателей можно выделить изолированные и комплексные (многомерные) ряды динамики. Если ведется анализ во времени одного показателя, имеем изолированный ряд динамики (см. табл. 5.1 и 5.2). Комплексный ряд динамики получаем в том случае, когда в хронологической последовательности дается система показателей, связанных между собой единством процесса или явления (см. табл. 5.3).
Таблица 5.1 Объем продаж долларов США на ММВБ, млн долл.
Дата 10.01.94 11.01.94 12.01.94 13.01.94
Объем продаж 126,750 124,300 148,800 141,400
Таблица 5.2 Индекс инфляции в 1993 г. (на конец периода, в % к декабрю 1992 г.)
Период Январь Февраль Март Апрель Май Июнь
Индекс  инфляции 126 162 190 221 264 310
   Таблица 5.3
Потребление основных продуктов питания на одного члена семьи, кг/год
Продукты 1980 1985 1990 1991 1992 1993
Мясо  и мясопродукты 80,0 78,4 74,1 68,3 58,7 63,2
Молоко  и молочные            
продукты 411,2 389,6 378,9 345,4 280,4 285,6
Хлебные продукты 101,2 91,6 85,7 91,8 98,0 105,8
 
   5.2. Правила построения рядов динамики
   Чтобы о развитии явления можно было получить представление при помощи числовых уровней, при составлении ряда динамики должны выполняться следующие требования.
   1. Периодизация развития, т.е. расчленение его во времени на однородные этапы, в пределах которых показатель подчиняется одному закону развития. Это, по существу, типологическая группировка во времени. Периодизация может осуществляться несколькими методами.
   А. Исторический метод. Периодизация осуществляется на основе «узаконенной» структуры динамики, при этом обращают внимание на значимые даты и события, а именно: время принятия управленческих решений по данному показателю, смену хозяйственного механизма, смену руководства, войны и т.п. Редко удается.
   Б. Метод параллельной периодизации. Идея этого метода заключается в следующем. Пусть Y—-анализируемый показатель, развернутый в динамический ряд {Уt}, где Yt — значение уровня ряда в момент (интервал) времени t Возможно, существует показатель X, которому соответствует динамический ряд {Хt}, определяющий поведение исследуемого показателя Y. Тогда в роли однокачественных периодов развития Y нужно взять периоды X. Рассмотрим условный пример:
Показатель 1981 1982 1983 1984 1985 1986 1987 1988 1989
Х 10 9 11 13 12 18 17 20 21
Y 20 19 21 24 24 35 34 40 41
   Периоды однокачественной динамики показателей X легко выделить: это 1981-1985 и 1986-1989 гг. Линейный коэффициент корреляции между этими рядами очень высок: R == 0,995. Таким образом, можно считать, что ряд Х полностью определяет значение уровней ряда Y. Теперь, если предстоит качественный скачок показателя X, то с очень большой степенью вероятности можно ожидать аналогичных изменений показателя Y. 

   В. Методы многомерного статистического анализа. Часто требуется выделить однокачественные периоды в развитии явлений или процессов, получить адекватное отображение которых с помощью одного лишь показателя трудно. К таковым относятся, в частности, здоровье населения, развитие сельскохозяйственного производства и многие другие. Необходима система показателей, иначе говоря — комплекс показателей учитывающих многообразие аспектов явления.
   На  основе комплексных динамических рядов (системы показателей) периодизация реализуется методом многомерной средней и методами факторного анализа.
   2. Статистические данные должны быть сопоставимы по территории, кругу охватываемых объектов, единицам измерения, времени регистрации, ценам, методологии расчета. Сопоставимость по территории означает, что данные по странам и регионам, границы которых изменились, должны быть пересчитаны в старых пределах. Сопоставимость по кругу охватываемых объектов означает сравнение совокупностей с равным числом элементов. Территориальная и объемная сопоставимость обеспечивается смыканием рядов динамики, при этом либо абсолютные уровни заменяются относительными, либо делается пересчет в условные абсолютные уровни. Не возникает особых сложностей при обеспечении сопоставимости данных по единицам измерения; стоимостная сравнимость достигается системой сопоставимых цен. Трудности могут появиться при сравнении данных по моменту регистрации. В большей степени это относится к сезонным явлениям. В таких случаях даже регистрации на одну и ту же дату часто бывает недостаточно для обеспечения сопоставимости. Например, численность скота в домашнем хозяйстве на 20.11.1980 г. и 20.11.1990 г. качественно различается в связи с ранней зимой 1980 г., что привело соответственно к раннему забою скота. Регистрацию таких процессов лучше выполнять в «нейтральные» даты. Это середина зимы, когда забой прекращается, и середина лета, когда процесс появления приплода стабилизируется и заканчивается.
   3. Величины временных интервалов должны соответствовать интенсивности изучаемых процессов. Чем больше вариация уровней во времени, тем чаще следует делать замеры. Соответственно для стабильных процессов интервалы можно увеличить.
   Так, переписи населения достаточно проводить один раз в десять лет; учет национального дохода, урожая ведется раз в год, ежедневно регистрируются курсы покупки и продажи валют, ежечасно — температура воздуха и т. п.
   4. Числовые уровни рядов динамики должны быть упорядоченными во времени. Не допускается анализ рядов с пропусками отдельных уровней, если же такие пропуски неизбежны, то их восполняют условными расчетными значениями.
   5.3. Показатели анализа рядов динамики
   При изучения явления во времени перед исследователем встает проблема описания интенсивности изменения и расчета средних показателей динамики. Решается она путем построения соответствующих показателей. Для характеристики интенсивности изменения во времени такими показателями будут:
       1) абсолютный прирост,
       2) темпы ростра,
       3) темпы прироста,
       4) абсолютное значение одного процента прироста. 

   В случае, когда сравнение проводится с периодом (моментом) времени, начальным  в ряду динамики, получают базисные показатели. Если же сравнение производится с предыдущим периодом или моментом времени, то говорят о цепных показателях.
         Расчет  показателей динамики представлен  в следующей таблице
                                                      
   Рассмотрим  пример. Имеются данные об объемах  и динамике продаж акций на 15 крупнейших биржах России за пять месяцев 1993 г. 

Показатель Март Апрель Май Июнь Июль Август
Объем продаж,            
млн руб. 709,98 1602,61 651,83 220,80 327,68 277,12
Абс. прирост:            
  цепной, 892,63 -950,78 431,03 106,88 -50,56
  базисный   892,63 -58,15 -489,18 -382,3 -432,86
Коэффициент            
(индекс)            
роста цепной 2,257 0,407 0,339 1,484 0,846
Темп  роста, %:            
  цепной, —- 225,7 40,7 33,9 148,4 84,6
  базисный 100 225,7 91,8 31,1 46,2 39,0
Темп  прироста            
  цепной, % 125,7 -59,3 -66,1 48,4 -15,4
  базисный, % 125,7 -8,2 -68,9 -53,8 -61,0
Абсолютное            
значение            
1 % прироста            
(цепной) 7,10 16,03 6,52 2,21 3,28
   Система средних показателей динамики включает:
   средний уровень ряда,
   средний абсолютный прирост,
   средний темп роста,
   средний темп прироста.
   Средний уровень ряда —это показатель, обобщающий итоги развития явления за единичный интервал или момент из имеющейся временной последовательности. Расчет среднего уровня ряда динамики определяется видом этого ряда и величиной интервала, соответствующего каждому уровню.
    Для интервальных рядов с равными периодами  времени средний уровень Y рассчитывается следующим образом:
   где n или (n +1) — общая длина временного ряда или общее число равных временных отрезков, каждому из которых соответствует свой уровень Yi (i = 1, 2, ..., n или i == 0, 1, 2, ..., n).
   Если  в интервальном ряду отрезки имеют неравную длительность, то средний уровень рассчитывается по формуле средней арифметической: 

   
   Выбор формулы определяется характером исходных данных; при этом числитель должен иметь реальное содержание.
   Для моментных временных рядов величина среднего уровня зависит от того, как шло развитие явления в рамках интервалов, разделяющих отдельные наблюдения. Обычно считают, что в пределах каждого периода, разделяющего моментные наблюдения, развитие происходило по линейному закону. Тогда общий средний уровень находится как среднее значение из средних по каждому интервалу. Для моментного ряда с равноотстоящими моментами получаем в итоге формулу средней хронологической.
   Вид формулы определяется способом нумерации  уровней. Если уровни нумеруются начиная  с нуля, то средняя хронологическая имеет вид 

    Для моментного ряда с неравными интервалами  предварительно находятся значения уровней в серединах интервалов: 

   
   Рассмотрим  примеры. 1. По данным табл. 5.1, 

       
   2. Имеются данные о валютном курсе на ММВБ (руб./долл.):
Дата 13.12.93 14.12.93 15.12.93 16.12.93 17.12.93
Курс 1231 1237 1247 1247 1250
 
           
   Средний абсолютный прирост рассчитывается по формулам в зависимости от способа нумерации интервалов (моментов).
     

   5.4. Структура ряда  динамики. Проверка ряда на наличие тренда
   Всякий  ряд динамики теоретически может  быть представлен в виде составляющих:
   1) тренд — основная тенденция развития динамического ряда (к увеличению либо снижению его уровней);
   2) циклические (периодические) колебания, в том числе сезонные; 3) случайные колебания. Изучение тренда включает два основных этапа:
   1) ряд динамики проверяется на наличие тренда;
   2) производится выравнивание временного ряда и непосредственное выделение тренда с экстраполяцией полученных результатов.
   Проверка  на наличие тренда в ряду динамики может быть осуществлена по нескольким критериям.
   1. Метод средних. Изучаемый ряд динамики разбивается на несколько интервалов (обычно на два), для каждого из которых определяется средняя величина (У1, У2). Выдвигается гипотеза о существенном различии средних. Если эта гипотеза принимается, то признается наличие тренда.
   2.Фазочастотный критерий знаков первой разности (Валлиса и Мура). Суть его заключается в следующем: наличие тренда в динамическом ряду утверждается в том случае, если этот ряд не содержит либо содержит в приемлемом количестве фазы — изменение знака разности первого порядка (абсолютного цепного прироста).
   3. Критерий Кокса и Стюарта. Весь анализируемый ряд динамики разбивают на три равные по числу уровней группы (в том случае, если количество уровней ряда динамики не делится на три, недостающие уровни нужно добавить) и сравнивают между собой уровни первой и последней групп. 

   Непосредственное  выделение тренда может быть произведено тремя методами.
   1. Укрупнение интервалов. Ряд динамики разделяют на некоторое достаточно большое число равных интервалов. Если средние уровни по интервалам не позволяют увидеть тенденцию развития явления, переходят к расчету уровней за большие промежутки времени, увеличивая длину каждого интервала (одновременно уменьшается количество интервалов).
   2. Скользящая средняя. В этом методе исходные уровни ряда заменяются средними величинами, которые получают из данного уровня и нескольких симметрично его окружающих. Целое число уровней, по которым рассчитывается среднее значение, называют интервалом сглаживания. Интервал может быть нечетным (3, 5, 7 и т. д. точек) или четным (2, 4, 6 и т.д. точек).
   При нечетном сглаживании полученное среднее  арифметическое значение закрепляют за серединой расчетного интервала, при четном этого делать нельзя. Поэтому при обработке ряда четными интервалами их искусственно делают нечетными, для чего образуют ближайший больший нечетный интервал, но из крайних его уровней берут только 50 %.
   Недостаток  методики сглаживания скользящими  средними состоит в условности определения  сглаженных уровней для точек  в начале и конце ряда. Получают их специальными приемами расчетом средней арифметической взвешенной. Так, при сглаживании по трем точкам выравненное значение в начале ряда рассчитывается по формуле
    Для последней  точки расчет симметричен. При сглаживании  по пяти точкам имеем:
    Для последних  двух точек ряда расчет сглаженных значений полностью симметричен сглаживанию в двух начальных точках.
    Формулы расчета  по скользящей средней выглядят, в  частности, следующим образом: 
 

   3. Аналитическое выравнивание. Под этим понимают определение основной проявляющейся во времени тенденции развития изучаемого явления. Развитие предстает перед исследователем как бы в зависимости только от течения времени. В итоге выравнивания временного ряда получают наиболее общий, суммарный, проявляющийся во времени результат действия всех причинных факторов. Отклонение конкретных уровней ряда от уровней, соответствующих общей тенденции, объясняют действием факторов, проявляющихся случайно или циклически. В результате приходят к трендовой модели
    Целью аналитического выравнивания динамического ряде является определение аналитической или графической зависимости f(t). На практике по имеющемуся временному ряду задают вид и находят параметры функции f(t), а затем анализируют поведение отклонений от тенденции, функцию f(t) выбирают таким образом, чтобы она давала содержательное объяснение изучаемого процесса.
   Чаще  всего при выравнивании используются следующие зависимости:
   
   Линейная  зависимость выбирается в тех случаях, когда в исходном временном ряду наблюдаются более или менее постоянные абсолютные цепные приросты, не проявляющие тенденции ни к увеличению, ни к снижению.
   Параболическая  зависимость используется, если абсолютные цепные приросты сами по себе обнаруживают некоторую тенденцию развития, но абсолютные цепные приросты абсолютных цепных приростов (разности второго порядка) никакой тенденции развития не проявляют.
   Экспоненциальные  зависимости применяются, если в исходном временном ряду наблюдается либо более или менее постоянный относительный рост (устойчивость цепных темпов роста, темпов прироста, коэффициентов роста), либо, при отсутствии такого постоянства, — устойчивость в изменении показателей относительного роста (цепных темпов роста цепных же темпов роста, цепных коэффициентов роста цепных же коэффициентов или темпов роста и т. п.). 

   Оценка параметров (а0, а1, a2, ...) осуществляется следующими методами:
   1 ) методом избранных точек,
   2) методом наименьших расстояний,
   3) методом наименьших квадратов (МНК).
    В большинстве  расчетов используют метод наименьших квадратов (см. гл. 7), который обеспечивает наименьшую сумму квадратов отклонений фактических уровней от выравненных:
    Для линейной зависимости (f(t) == а0 + a1t) параметр а0 обычно интерпретации не имеет, но иногда его рассматривают как Обобщенный начальный уровень ряда; а1 — сила связи, т. е. параметр, показывающий, насколько изменится результат при изменении времени на единицу. Таким образом, а, можно представить как постоянный теоретический абсолютный прирост. Построив уравнение регрессии, проводят оценку его надежности. Это делается посредством критерия Фишера (F). Фактический уровень (Fфакт.) сравнивается с теоретическим (табличным) значением: 
 
 

    В качестве примера  рассмотрим число зарегистрированных браков на 1000 жителей России за период с 1977 по 1990 г.:
Год Число зареги- стрированных
браков, %о
t У * t t2 f(t)
1977 11,2 -13 -145,6 169 11,077
1978 10,9 -11 -119,9 121 10,931
1979 10,7 -9 -96,3 81 10,785
1980 10,6 -7 -74,2 49 10,639
1981 10,6 -5 - 53,2 25 10,493
1982 10,4 -3 -31,2 9 16,347
1983 10,4 -1 -10,4 1 10,202
1984 9,6 1 9,6 1 10,056
1985 9,7 5 29,1 9 9,910
1986 9,8 5 49,0 25 9,764
1987 9,9 7 69,3 49 9,618
1988 9,5 9 85,5 81 9,472
1989 9,4 11 103,4 121 9,326
1990 9,1 13 118,3 169 9,180
Итого 141,8 0 "66,4 910 141,800
   Выравнивание  проведено по линейной трендовой модели. Оценка параметров уравнения выполнена методом наименьших квадратов.
    Параметры последнего уравнения регрессии можно интерпретировать следующим образом: а0 = 11,077 — это исходный уровень брачности по России за период до 1977 г.; а1 =-0,146— показатель силы связи, т. е. в России за период с 1977 по 1990 г. происходило снижение уровня брачности на 0,146 %о ежегодно.
   Следующий шаг аналитического выравнивания — оценка надежности уравнения регрессии:
           
   
   5.5. Анализ сезонных колебаний
   Если  в анализируемой временной последовательности наблюдаются устойчивые отклонения от тенденции (как в большую, так и в меньшую сторону), то можно предположить наличие в ряду динамики некоторых (одного или нескольких) колебательных процессов. Это особенно заметно, когда изучаемые явления имеют сезонный характер, — возрастание или убывание уровней повторяется регулярно с интервалом в один год (например, производство молока и мяса по месяцам года, потребление топлива и электроэнергии для бытовых нужд, сезонная продажа товаров и т.д.). Уровень сезонности оценивается с помощью:
   1) индексов сезонности;
   2) гармонического анализа.
   Индексы сезонности показывают, во сколько раз фактический уровень ряда в момент или интервал времени t больше среднего уровня либо уровня, вычисляемого по уравнению тенденции f(t). При анализе сезонности уровни временного ряда показывают развитие явления по месяцам (кварталам) одного или нескольких лет. Для каждого месяца (квартала) получают обобщенный, индекс сезонности как среднюю арифметическую из одноименных индексов каждого года. Индексы сезонности — это, по существу, относительные величины координации, когда за базу сравнения принят либо средний уровень ряда, либо уровень тенденции. Способы определения индексов сезонности зависят от наличия или отсутствия основной тенденции.
    Если  тренда нет или он незначителен, то для каждого месяца (квартала) 

       гдеУt — уровень показателя за месяц (квартал) t;
       Уср — общий средний уровень показателя.
        Как отмечалось выше, для обеспечения устойчивости показателей можно взять больший промежуток времени. В этом случае             

   где Уt, — средний уровень показателя по одноименным месяцам за ряд лет;
     Т—число лет.
   Пример. Имеются данные об объеме продаж акций на 15 крупнейших биржах России за 1993 г. (млн руб.):
Месяц Уровень показателя (Уt) it,сез
Январь 12,78 0,027
Февраль 122,08 0,254
Март 709,98 1,477
Апрель 1602,61 3,334
Май 651,83 1,356
Июнь 220,80
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.