На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


реферат Эволюция Земли. Эволюция человека. Глобальный эволюционизм

Информация:

Тип работы: реферат. Добавлен: 10.10.2012. Сдан: 2011. Страниц: 15. Уникальность по antiplagiat.ru: < 30%

Описание (план):


Министерство  образования науки  Российской Федерации
Федеральное государственное  автономное образовательное  учреждение
Высшего профессионального  образования «Казанский (Приволжский)
Федеральный университет» 

Дисциплина  «Концепции современного естествознания» 
 
 

Реферат
На тему: «Эволюция Земли. Эволюция человека.
Глобальный  эволюционизм.» 

       
 
 
 

Автор реферата:                                                                                           Фёдорова Ю.А.
Группа                                                                                                                               121
Руководитель  работы, доцент:                                                                          Беилин И.Л 
 
 
 

                                                 
Казань 2011 г.
Содержание: 

1)ЭВОЛЮЦИЯ ЗЕМЛИ: 

а) Основные закономерности геологического развития Земли
б) Основные события в развитии Земли в MZ и KZ
в) Результат  эволюции.
г) Особенности  осадконакопления
д) Палеогеография мезозоя
е) Строение Земной коры в Мезозое
ж) Особенности  органического мира Кайнозоя
з) Палеогеографические  особенности
и) Особенности  осадконакопления
к) Основные закономерности геологического развития Земли 

2) ЭВОЛЮЦИЯ ЧЕЛОВЕКА
а) Характерные признаки человека
б) Увеличение мозга.
в) Строение зубов.
г) Различия на биомолекулярном уровне.
д) Исследование происхождения человека
е) Методы датирования.
ж) Эволюция: к австралопитеку.
з) Австралопитек.
и) Расовые вариации.
к) Продолжающаяся эволюция человека. 

3)ГЛОБАЛЬНЫЙ  ЭВОЛЮЦИОНИЗМ
а) Антропный принцип с позиции глобального эволюционизма
б) К общей теории глобального эволюционизма 

4)ЛИТЕРАТУРА 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Введение.
     Эволюция  Земли:
     Вопрос  ранней эволюции Земли тесно связан с теорией ее происхождения. Сегодня  известно, что наша планета образовалась около 4,5 млрд. лет назад. В процессе формирования Земли из частиц протопланетного облака постепенно увеличивалась ее масса. Росли силы тяготения, а следовательно, и скорости частиц, падавших на планету. Кинетическая энергия частиц превращалась в тепло, и Земля все сильнее разогревалась. При ударах на ней возникали кратеры, причем выбрасываемое из них вещество уже не могло преодолеть земного тяготения и падало обратно.
     Чем крупнее были падавшие объекты, тем  сильнее они нагревали Землю. Энергия удара освобождалась не на поверхности, а на глубине, равной примерно двум поперечникам внедрившегося тела. А так как основная масса на этом этапе поставлялась планете телами размером в несколько сот километров, то энергия выделялась в слое толщиной порядка 1000 км. Она не успевала излучиться в пространство, оставаясь в недрах Земли. В результате температура на глубинах 100–1000 км могла приблизится к точке плавления. Дополнительное повышение температуры, вероятно, вызвал распад короткоживущих радиоактивных изотопов.
     По-видимому, первые возникшие расплавы представляли собой смесь жидких железа, никеля и серы. Расплав накапливался, а  затем вследствие более высокой  плотности просачивался вниз, постепенно формируя земное ядро. Таким образом, дифференциация (расслоение) вещества Земли могла начаться еще на стадии ее формирования. Ударная переработка поверхности и начавшаяся конвекция, несомненно, препятствовали этому процессу. Но определенная часть более тяжелого вещества все же успевала опустится под перемешиваемый слой. В свою очередь дифференциация по плотности приостанавливала конвекцию и сопровождалась дополнительным выделением тепла, ускоряя процесс формирования различных зон в Земле.
     Предположительно  ядро образовалось за несколько сот  миллионов лет. При постепенном остывании планеты богатый никелем железоникелевый сплав, имеющий высокую температуру плавления, начал кристаллизуются – так (возможно) зародилось твердое внутреннее ядро. К настоящему времени оно составляет 1,7% массы Земли. В расплавленном внешнем ядре сосредоточено около 30% земной массы.
     Развитие  других оболочек продолжалось гораздо  дольше и в некотором отношении  не закончилось до сих пор.
Эволюция  человека:
Фундаментальные процессы генетической изменчивости, адаптации и отбора, которые лежат в основе огромного разнообразия органической жизни, определяют также ход эволюции человека. Изучением процессов становления человека как вида, а также внутривидовых вариаций, анатомических и физиологических, занимается антропология (во многих странах эту науку называют физической антропологией, отличая от культурной антропологии, к которой относят лингвистику, доисторическую археологию и этнографию).
В 1739 шведский естествоиспытатель Карл Линней в своей Системе природы (Systema Naturae) классифицировал человека – Homo sapiens – как одного из приматов. С тех пор среди ученых не возникало никаких сомнений в том, что именно таково место человека в зоологической системе, которая охватывает все ныне живущие формы едиными классификационными отношениями, основанными главным образом на особенностях анатомического строения. В этой системе приматы образуют один из отрядов в составе класса млекопитающих и разделяются на два подотряда: полуобезьяны (в их число входят лемуры и долгопяты) и высшие приматы. К последним относятся обезьяны (а именно обезьяны Старого света, т.е. мартышкообразные, и обезьяны Нового света), человекообразные обезьяны (гиббоны и крупные человекообразные обезьяны – орангутан, гориллы, шимпанзе) и человек. Приматы обладают многими общими специфическими признаками, отличающими их от других млекопитающих.
Ни Линней, ни другие систематики того времени  не создали какой-либо эволюционной теории для объяснения как морфологического сходства, объединяющего Homo sapiens с родственными приматами, так и характерных отличий, позволяющих выделить его в отдельный вид. Несмотря на это, созданная Линнеем классификация сыграла заметную роль в появлении теории эволюции. Некоторые эволюционные концепции были сформулированы еще до опубликования в 1859 Происхождения видов (On the Origin of Species) Дарвина. В конце 18 в. на эти темы писали Дидро, Кант и Лаплас, а в начале 19 в. работы, в которых разнообразие органического мира объяснялось эволюционным процессом, опубликовали Ламарк и Эразм Дарвин, дед Чарлза Дарвина.
Хотя эти ранние концепции и позволяли предполагать, что современный человек, возможно, произошел от более примитивных  обезьяноподобных видов, тем не менее  обнаруженные к тому времени ископаемые остатки тех, кого мы теперь признаем предшественниками современного человека, либо совсем не вызывали интереса, либо рассматривались как аномалии. Только после выхода в свет Происхождения видов гибралтарский человек, открытый в 1848, а также неандертальский череп, найденный при раскопках в 1856, привлекли внимание в качестве доказательств эволюции человека.
Британский биолог Томас Гексли, последователь учения Дарвина, одним из первых дал оценку этим скудным ископаемым остаткам, имевшим относительно небольшой  возраст. В 20 в. в Европе, Азии и Африке было обнаружено множество остатков гоминид, т.е. представителей родословной линии человека. Эти открытия совершаются и в наши дни, так что мы все больше узнаем, как и в каких временнх рамках протекала эволюция человека, а также, до некоторой степени, какие факторы могли влиять на этот процесс.
Глобальный  эволюционизм:
ОТГЭ в полном законченном виде должна представлять собой философскую (логическую в  гегелевском смысле) систему в  которой прослеживается эволюция Мира, в форме последовательного вывода взаимообуславливаемых категорий (определений). Различные части (этапы) этой логической системы должны однозначно соответствовать различным этапам эволюции Мира (отдельным видам движения). Завершаться система должна выводом необходимости Конца Мира, как абсолютного результата эволюции, как возврата к синкретическому единству всех его определений (видов движения), возврата к неопределенному состоянию.
ОТГЭ не включает в себя остальные наука в качестве “частных решений”, а лишь определяет их логическую взаимосвязь, указывая, что в рамках каждой из этих научных систем, должен присутствовать механизм развития необходимо приводящий к внутренним противоречиям данной системы, которые разрешаются лишь при переходе к следующему этапу, к следующей системе.
Далее в тезисной форме представим некоторые моменты будущей теории.
Основное направление  эволюции Мира в ОТГЭ понимается не как движение от хаоса к порядку, а наоборот – за исходную точку  принимается состояние непосредственного, абсолютно неопределенного (не имеющего определений) порядка, и эволюция начинается с распада этого порядка в результате первого определения Мира самим фактом Начала. Появление первого различенного определения Мира продуцирует новые определения, задающее новый порядок, который распадается в результате соотнесения нового и старых определений. Этот процесс движения Мира, через самоопределение нового порядка и разложение его “под давлением” предыдущих определений и можно назвать эволюцией. 
 
 
 
 

ЭВОЛЮЦИЯ  ЗЕМЛИ.
      Вопрос ранней эволюции Земли  тесно связан с теорией ее происхождения. Сегодня известно, что наша планета образовалась около 4,5 млрд. лет назад. В процессе формирования Земли из частиц протопланетного облака постепенно увеличивалась ее масса. Росли силы тяготения, а следовательно, и скорости частиц, падавших на планету. Кинетическая энергия частиц превращалась в тепло, и Земля все сильнее разогревалась. При ударах на ней возникали кратеры, причем выбрасываемое из них вещество уже не могло преодолеть земного тяготения и падало обратно.
     Чем крупнее были падавшие объекты, тем сильнее они нагревали Землю. Энергия удара освобождалась не на поверхности, а на глубине, равной примерно двум поперечникам внедрившегося тела. А так как основная масса на этом этапе поставлялась планете телами размером в несколько сот километров, то энергия выделялась в слое толщиной порядка 1000 км. Она не успевала излучиться в пространство, оставаясь в недрах Земли. В результате температура на глубинах 100-1000 км могла приблизится к точке плавления. Дополнительное повышение температуры, вероятно, вызвал распад короткоживущих радиоактивных изотопов.
     По-видимому, первые возникшие расплавы  представляли собой смесь жидких  железа, никеля и серы. Расплав  накапливался, а затем вследствие  более высокой плотности просачивался  вниз, постепенно формируя земное ядро. Таким образом, дифференциация (расслоение) вещества Земли могла начаться еще на стадии ее формирования. Ударная переработка поверхности и начавшаяся конвекция, несомненно, препятствовали этому процессу. Но определенная часть более тяжелого вещества все же успевала опустится под перемешиваемый слой. В свою очередь дифференциация по плотности приостанавливала конвекцию и сопровождалась дополнительным выделением тепла, ускоряя процесс формирования различных зон в Земле.
     Предположительно ядро образовалось за несколько сот миллионов лет. При постепенном остывании планеты богатый никелем железоникелевый сплав, имеющий высокую температуру плавления, начал кристализовываться - так (возможно) зародилось твердое внутреннее ядро. К настоящему времени оно составляет 1,7% массы Земли. В расплавленном внешнем ядре сосредоточено около 30% земной массы.
     Развитие других оболочек продолжалось  гораздо дольше и в некотором  отношении не закончилось до  сих пор. 
     Литосфера сразу после своего образования имела небольшую толщину и была очень неустойчивой. Она снова поглощалась мантией, разрушалась в эпоху так называемой великой бомбардировки (от 4,2 до 3,9 млрд. лет назад), когда Земля, как и Луна, подвергалась ударам очень крупных и довольно многочисленных метеоритов. На Луне и сегодня можно увидеть свидетельства метеоритной бомбардировки - многочисленные кратеры и моря (области, заполненные излившейся магмой). На нашей планете активные тектонические процессы и воздействие атмосферы и гидросферы практически стерли следы этого периода.
     Около 3,8 млрд. лет назад сложилась  первая легкая и, следовательно, "непотопляемая" гранитная  кора. В то время планета уже  имела воздушную оболочку и  океаны; необходимые для их образования  газы усиленно поставлялись из недр Земли в предшествующий период. Атмосфера тогда состояла в основном из углекислого газа, азота и водяных паров. Кислорода в ней было мало, но он вырабатывался в результате, во-первых, фотохимической диссоциации воды и, во-вторых, фотосинтезирующей деятельности простых организмов, таких как сине-зеленые водоросли.
     600 млн лет назад на Земле  было несколько подвижных континентальных  плит, весьма похожих на современные.  Новый сверхматерик Пангея появился  значительно позже. Он существовал 300-200 млн. лет назад, а затем распался на части, которые и сформировали нынешние материки.
     Что ждет Землю в будущем?  На этот вопрос можно ответить  лишь с большой степенью неопределенности, абстрагируясь как от возможного  внешнего, космического влияния, так и от деятельности человечества, преобразующего окружающую среду, причем не всегда в лучшую сторону.
     В конце концов недра Земли  остынут до такой степени, что  конвекция в мантии и, следовательно,  движение материков (а значит  и горообразование, извержение вулканов, землятрясения) постепенно ослабнут и прекратятся. Выветривание со временем сотрет неровности земной коры, и поверхность планеты скроется под водой. Дальнейшая ее судьба будет определяться среднегодовой температурой. Если она значительно понизится, то океан замерзнет и Земля покроется ледяной коркой. Если же температура повысится (а скорее всего именно к этому и приведет возрастющая светимость Солнца), то вода испарится, обнажив ровную поверхность планеты. Очевидно, ни в том, ни в другом случае жизнь человечества на Земле будет уже невозможна, по крайней мере в нашем современном представлении о ней. 

Результат эволюции.
В процессе эволюции возникли атмосфера и гидросфера Земли.
     Атмосфера Земли: в настоящее  время Земля обладает атмосферой массой примерно 5,15*1018 кг, т.е. менее милионной доли массы планеты. Вблизи поверхности она содержит 78,08% азота, 20,95% кислорода, 0,94% инертных газов, 0,03% углекислого газа и в незначительных количествах другие газы. Давление и плотность в атмосфере убывают с высотой. Половина воздуха содержится в нижних 5,6 км, а почти вся вторая половина сосредоточена до высоты 11,3 км. На высоте 95 км плотность воздуха в миллион раз ниже, чем у поверхности. На этом уровне и химический состав атмосферы уже иной. Растет доля легких газов, и преобладающими становятся водород и гелий. Часть молекул разлагается на ионы, образуя ионосферу. Выше 1000 км находятся радиационные пояса. Их тоже можно рассматривать как часть атмосферы, заполненную очень энергичными ядрами атомов водорода и электронами, захваченными магнитным полем планеты.
     Гидросфера Земли: вода покрывает  более 70% поверхности земного  шара, а средняя глубина Мирового  океана около 4 км. Масса гидросферы  примерно 1,46*1021 кг. Это в 275 раз  больше массы атмосферы, но лишь 1/4000 от массы всей Земли. Гидросферу на 94% составляют воды Мирового океана, в которых растворены соли (в среднем 3,5%), а также ряд газов. Верхний слой океана содержит 140 трлн тонн углекислого газа, а растворенного кислорода - 8 трлн тонн. 

Основные  события в развитии Земли в MZ и KZ
Мезозойский этап развития
Кайнозойский  этап развития 

Основные  закономерности геологического развития Земли
Полезные  ископаемые
Мезозойский этап истории Земли охватывает мезозойскую  эру длительностью 170 ±10 млн. лет, которая в свою очередь подразделяется на триасовый, юрский и меловой периоды.
Вспомним, чем завершился Палеозойский этап в  истории Земли.
В результате герцинского этапа складчатости завершился геосинклинальный цикл развития Урало-Монгольского (Урал), Атлантического (Аппалачи), Арктического (Иннуитская) поясов и отдельных частей Тихоокеанского (В. Австралия) и Палеотетиса (западная часть). В результате сформировался суперматерик-Пангея-2. Происходит вымирание почти всех древнейших животных - руководящих форм палеозоя.
В мезозое  происходит обновление органического  мира, который является промежуточным  между палеозоем и кайнозоем. Мезозой – это эра рептилий и моллюсков, в юре появляются древние птицы, а в мелу – расцвет  фораминифер и динозавров. В триасе появляются первые млекопитающие. Для растений – это расцвет голосеменных, а в меловой период – появление покрытосеменных. 

Особенности осадконакопления
Для Триаса типичны континентальные красноцветные  толщи и коры выветривания. Морские  осадки локализовались в геосинклинальных областях. В широких масштабах проявился трапповый магматизм на платформах – Сибирской, Ю.-Американской и на юге Африканской. Выделяют три типа – эксплозивный, лавовый и интрузивный (силлы).
В Юре  осадки более разнообразны. Среди морских – кремнистые, карбонатные, глинистые и глауконитовые песчаники; континентальных – преобладают отложения коры выветривания, а в лагунах формируются угленосные толщи. Магматизм проявился в геосинклинальных областях – Кордильеры и Верхояно-Чукотской, а трапповый – на платформах – Ю. Американской и Африканской.
Особенностью  меловых отложений является максимальное накопление писчего мела (состоит  из фораминифер и остатков панцирей водорослей кокколитофорид). 

Палеогеография  мезозоя
С образованием суперматерика Пангея-2 связана величайшая регрессия моря в истории Земли. Лишь небольшие участки, прилегающие к геосинклинальным поясам покрывались неглубокими морями (области, прилегающие к Кордильерам и Верхояно-Чукотской геосинклинали). Герцинские складчатые пояса представляли области расчлененного рельефа.
Климат  Триаса – аридный континентальный, лишь в приморских областях (Колыма, Сахалин, Камчатка и др.) – умеренный. В конце Триаса начинается трансгрессия моря, которая широко проявилась в  поздней Юре. Море распространялось в западную часть Северо-Американской платформы, почти на всю В.-Европейскую платформу, в северо-западной и восточной частях Сибирской платформы. Максимальная трансгрессия моря проявилась в верхнем Мелу. Для климата этих периодов характерно чередование влажного тропического и сухого аридного. 

Строение  Земной коры в Мезозое
Для мезозоя  характерно проявление перестройки  Земной коры в один тектонический  этап – Киммерийский.
В конце  Триаса начинается раскол суперматерика  Пангея-2. Группа платформ северного полушария отходит от Гондваны и происходит новое заложение геосинклинального пояса на месте Палеотетиса.
На рубеже Триаса и Юры начинается раскол континента Лаврентий на Сев.-Американскую и  В.-Европейскую платформы. Он начинается с процесса заложения рифтовой зоны в Северной Атлантике, которая с конца Юры распространяется на Центральную и Южную Атлантику. Морской бассейн начал формироваться с ранней Юры в Северной Атлантике, а в конце раннего Мела практически сформировалась система Атлантического океана. Параллельно шло формирование Индийского океана, а все это вместе знаменует раскол Гондваны. С конца Юры начинается обособление Африканской платформы, от которой затем отделились Индостанская и Австралийская платформы.
Геосинклинальный  режим существовал в Тихоокеанском поясе и представлен Верхояно-Чукотской и Кордильерской геосинклиналями. Особенность их формирования – это положение по окраинам платформ, накопление мощной толщи флишевых отложений. Завершение геосинклинального этапа сопровождалось внедрением гранитов и складкообразованием. После горообразования геосинклинальный режим в этих частях Тихоокеанского пояса сохраняется, только область его развития смещается в сторону океанской плиты.
По-другому  происходило развитие Средиземноморского геосинклинального пояса, в котором выделяют Альпийско-Гималайскую, Тибетско-Индостанскую и Индонезийскую области. Каждая из них характеризуется своими особенностями развития. 

Альпийская  область подразделялась на три широтные зоны – две внешние с миогеосинклинальным типом разреза и одну внутреннюю – эвгеосинклинальную, которая в свою очередь подразделялась на систему глубоководных прогибов с ультраосновным магматизмом и систему поднятий. На рубеже Юры и Мела горообразовательные движения проявились в восточной части (Кавказ, Иран, Афганистан) и сопровождались внедрением гранитной магмы.
В Тибетско-Индостанской области геосинклинальный режим  в триасе и юре являлся продолжением позднепалеозойского, т.е. здесь происходили  завершающие этапы геосинклинального  развития, которые в киммерийский тектонический этап завершились формированием складчатости, и впоследствии развивались как молодые платформы.
В Мезозое  области проявления герцинской и  каледонской складчатости вступили в платформенный этап развития –  горные системы интенсивно разрушались и поставляли обломочный материал в краевые прогибы, межгорные впадины и платформенный чехол. Для Урало-Монгольского пояса – это Предуральский краевой прогиб, Тимано-Печерская, Западно-Сибирская и Туранская плиты.
На древних  платформах наряду с формированием осадочного чехла происходят глыбовые движения или эпиплатформенный орогенез. Особенно мощно он проявился на Северо-Американской платформе с образованием Скалистых гор. На Сибирской и Африканской платформах мощно проявился трапповый магматизм, с образованием силлов и кимберлитовых трубок.
К концу  мелового периода происходит новый  раскол Гондваны – Австралия вместе с Антарктидой перемещалась на юг, Африка двигалась на север, Ю.-Америка  начала движение на запад, хотя еще  и не полностью откололась от Африки.
Начинается  верхнемеловая великая трансгрессия моря. На рубеже мезозоя и кайнозоя вымирают рептилии, аммониты и многие другие виды животных. Существует много  гипотез, объясняющих это явление, но какой-то ясности пока нет.
В Киммерийский (Мz) этап развития Земной коры – разнообразие полезных ископаемых различного генезиса. На платформах формируются:
угленосные  толщи (Сибирь, Китай, Австралия);
эпоха оолитовых Fe руд (Зап. Сибирь, Германия, Франция);
бокситы (Урал, Сибирь, Ср. Азия, Франция, Испания и др.);
фосфориты (пояс от Марокко до Сирии);
соли  Туркмении и Сев. Америки.
С трапповым  магматизмом связаны:
Cu-Ni месторождения  Норильской группы,
алмазы  в кимберлитах Африки, Якутии.
В геосинклинальных складчатых областях с гранитными интрузиями связаны многочисленные месторождения Sn, W, Mo, Cu, Pb, Au, Sb, Сев. Америки, Китая, Индонезии, Приморья.
Особенность мезозоя – формирование мощных толщ писчего мела
Нефть и газ образуют крупные месторождения  в Зап. Сибири, Саудовской Аравии, Кувейте, Иране, Ливии и др.
Кайнозойский  этап истории Земли охватывает Кайнозойскую эру длительностью ~ 65 млн. лет и  подразделяющуюся на три периода  – палеогеновый, неогеновый и четвертичный (или антропогеновый) 

Особенности органического мира Кайнозоя.
1. Обновляется  фауна морей – появляются и  широко распространяются новые  виды простейших (Нуммулиты), двустворчатых  и брюхоногих моллюсков, это  расцвет шестилучевых кораллов, морских ежей и лилий; костистых  и хрящевых рыб (акулы). Из млекопитающих  – киты, тюлени, дельфины. От рептилий в Кайнозое сохранились черепахи, крокодилы, змеи и ящерицы. 

На суше господствующие позиции у млекопитающих  и птиц. В конце Палеогена появляются древние обезьяны, в конце четвертичного  периода – человек разумный.
С середины неогена устанавливается господство покрытосеменных растений.
2. Представители  органического мира начинают  обособляться по провинциям. Это  связано с разделением и перемещением  отдельных континентов, установлением  климатической зональности и  др. факторами. 

Палеогеографические особенности
1. В  Палеогене происходит последняя  крупная трансгрессия моря. Она  была по охвату территории  меньше верхнемеловой и распространялась  на участки материков, прилегающих  к Средиземноморскому геосинклинальному  поясу и на Западно-Сибирскую плиту. Климатическая зональность была смещена к северу – тропики доходили до Гренландии.
2. С  конца палеогена начинается регрессия  моря, происходит постепенное смещение  климатических поясов к югу.  Начинается похолодание и усиливается  контрастность климата.
3. В  антропогене возникают центры  оледенения – обширные территории  Сев.-Америки, Европы, Азии, Антарктиды  покрываются толщей материкового  льда. Выделяют несколько эпох  оледенения, среди которых максимальным  по площади было Днепровское  в Европе. Кроме влияния на климат, оледенения сыграли важную роль в формировании рельефа и осадконакоплении. 

Особенности осадконакопления
1. Многообразие  фациальных обстановок отразилось  в многообразии типов осадков.
В геосинклинальных областях осадочные породы флишевой формации достигают огромной мощности ~20 км. На платформах широко развиты озерные, речные, эоловые и другие континентальные осадки. В связи с оледенением широкое распространение получили различные типы моренных, озерно-ледниковых и лессовых отложений. 

2. Проявление  андезитобазальтового вулканизма, связанного с развитием рифтовых  поясов на платформах (Африканский,  Байкальский и др.) 

Строение  Земной коры связано с проявлением  Альпийского этапа складчатости в неогене. Сформировались складчатые сооружения Альпийско-Гималайского пояса, береговой части Кордильер и Анды. Их сопровождало формирование предгорных прогибов – Предкавказского, Предкарпатского и Мессопотамского.
В западной части Тихоокеанского пояса (Камчатка и др. области) продолжается геосинклинальная стадия развития.
На рубеже Мела и Палеогена происходит окончательный  раскол Гондваны – Австралия отделяется от Антарктиды, Африка и Южная Америка  расходятся окончательно. Северо-Американская подходит к Сибирской в районе Берингова моря.
На молодых  и древних платформах в неогене происходят колоссальные процессы эпиплатформенного орогенеза. Они сопровождаются глыбовыми поднятиями участков, которые определили формирование современного рельефа.
Кайнозойский  этап в формировании полезных ископаемых – на фоне разнообразия сформировавшихся месторождений следует выделить:
коры  выветривания Fe, Mn, Ni, Co и бокситов;
осадочные руды Fe и Mn (Керченское, Чиатурское и  др.);
1/3 мировых  запасов нефти (Кувейт, Кавказ, Туркмения,  Иран, Ирак, Саудовская Аравия, Каспий);
четвертичные  россыпи Au, Pt, Sn, алмазов и др.
С альпийской складчатостью связаны своеобразные золотосеребряные месторождения. 
 

Основные  закономерности геологического развития Земли
1. Цикличность  (периодичность) геологических процессов.
Она заключается в том, что геологические явления и процессы, сменяя друг друга во времени, образуют цепь событий, в которой каждое звено – это законченный цикл. Например, глобальный цикл – формирование суперматерика Пангея и его раскол. Таких циклов в истории земной коры было 2, сейчас протекает третий.
В свою очередь каждый из таких глобальных циклов состоит из нескольких тектонических  циклов (или этапов) развития земной коры. Начало каждого этапа –  заложение геосинклинальных подвижных  поясов, их интенсивное прогибание, в которое вовлекаются соседние платформы. Начинается морская трансгрессия. Инверсия в геосинклинальных поясах сопровождается складкообразованием, вздыманием земной коры и горообразованием. В этот процесс вовлекаются соседние участки платформы – начинается регрессия моря. Каждый тектонический этап завершается увеличением объема континентальной земной коры и увеличением объема платформенных участков земной коры.
2. Направленность  геологического развития
а. Наиболее наглядно эта закономерность прослеживается в развитии континентальной коры. От древних этапов к более молодым и современным мы отмечаем сокращение количества геосинклинальных поясов. А по мере прекращения геосинклинального режима складчатая область присоединяется к более древней платформе, тем самым, увеличивая её площадь и объем континентальной коры.
б. Направленность процесса формирования геосинклиналей в разные геотектонические этапы. Она  заключается в закономерном проявлении каждого этапа и стадии и соответствующих  каждому этапу набору геологических формаций.
в. Эволюция органического мира – яркий пример направленности развития от примитивных  организмов к наиболее высоко организованным – венец человек разумный.
г. Сокращение длительности тектонических этапов – если Докембрийский этап длился млрд. лет, то к Mz чуть больше 100 млн. лет
Полезные  ископаемые
Формирование  полезных ископаемых в Земной коре проходило во все геотектонические эпохи.
Докембрийский этап. Образование полезных ископаемых связано с грандиозными по масштабам  процессами магматизма и метаморфизма.
Огромные  запасы Fe руд сосредоточены в  железистых кварцитах (джеспилитах). Это  – КМА, Кривой Рог, Канада и т.д.
С метаморфическими комплексами пород связаны месторождения  слюд (мусковита и флогопита) в  Карелии, Сибири, Индии, Бразилии.
С интрузиями ультраосновного и основного составов связано образование месторождений Платины, Хромита в Ю. Африке (Бушвельдский и Великая Дайка), Cu-Ni – Печенга, Мончегорское, Ю. Африка, С. Америка
С осадочными породами формировались месторождения:
осадочных Fe руд (Бакальская группа, Ю. Якутия и др.),
медистых  песчаников (Удокан, Ю. Африка),
Au-конгломераов  с U – Витватерсранд, Блайнд-Ривер  (Канада),
Mn руды  – ЮАР, Гана, Индия
Нефтеносные горизонты Лено-Тунгусской впадины  – самые древние вендского  возраста.
Каледонский этап – основная часть полезных ископаемых формировалась с осадочным чехлом платформ. Выделяют эпохи:
накопления  фосфоритов в раннем кембрии Ср. Азия, Китай, Прибалтика, Вьетнам),
накопления  солей – Иркутская обл., Мичиган (США),
формирование  газо-нефтеносных горизонтов (м-е Хасси-Мессауд в Алжирской Сахаре, штатыКанзас и Оклахома), 

горючих сланцев – Прибалтика,
оолитовых Fe руд США и Канады.
В складчатых областях с интрузиями ультраосновного  состава связаны месторождения  хромита (Ю. Урал), асбеста (Тува, Канада), а с интрузиями кислого состава – золоторудные месторождения Сев. Казахстана и Кузнецкого Алатау.
Герцинский  этап – формируются наиболее разнообразные  по генезису и полезным компонентам  полезные ископаемые. Появляются новые  группы – коры выветривания и ископаемые угли.
Самые древние – Девонские месторождения  угля – о. Медвежий. Наиболее мощно  угленакопление происходило в краевых  прогибах и на платформах происходило  в Карбоне и Перми с образованием Печерского, таймырского, Тунгусского  бассейнов, в Китае, Индии и Австралии.
Нефтеносные горизонты формируются в Волго-Уральской  провинции, на Тимане, в США, Канаде, Иране.
Пермский  период – это эпоха соленакопления – м-е Верхнекамское, Германия, США.
На платформах формируются месторождения бокситов – Тихвинское, Сев. Онежское, Китай.
С раннегеосинклинальным  вулканизмом связано образование  месторождений медноколчеданных руд  на Урале, в Аппалачах; а с периодом завершающего этапа складчатости и  образованием магматических тел  среднего и кислого составов связано образование гидротермальных месторождений золота на Урале, олова – Корнуолл (Англия), железо- и меднорудных скарновых месторождений (г. Магнитная, Высокая, Краснотуринские и др.).
Киммерийский (Мz) этап развития Земной коры – разнообразие полезных ископаемых различного генезиса. На платформах формируются:
угленосные  толщи (Сибирь, Китай, Австралия);
эпоха оолитовых Fe руд (Зап. Сибирь, Германия, Франция);
бокситы (Урал, Сибирь, Ср. Азия, Франция, Испания  и др.);
фосфориты (пояс от Марокко до Сирии);
соли  Туркмении и Сев. Америки.
С трапповым  магматизмом связаны:
Cu-Ni месторождения  Норильской группы,
алмазы  в кимберлитах Африки, Якутии.
В геосинклинальных складчатых областях с гранитными интрузиями связаны многочисленные месторождения Sn, W, Mo, Cu, Pb, Au, Sb, Сев. Америки, Китая, Индонезии, Приморья.
Особенность мезозоя – формирование мощных толщ писчего мела.
Нефть и газ образуют крупные месторождения  в Зап. Сибири, Саудовской Аравии, Кувейте, Иране, Ливии и др.
Кайнозойский  этап – на фоне разнообразия сформировавшихся месторождений следует выделить:
коры  выветривания Fe, Mn, Ni, Co и бокситов;
осадочные руды Fe и Mn (Керченское, Чиатурское и  др.);
1/3 мировых  запасов нефти (Кувейт, Кавказ, Туркмения,  Иран, Ирак, Саудовская Аравия, Каспий);
четвертичные россыпи Au, Pt, Sn, алмазов и др.
С альпийской складчатостью связаны своеобразные золотосеребряные месторождения. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ЭВОЛЮЦИЯ  ЧЕЛОВЕКА
Фундаментальные процессы генетической изменчивости, адаптации и отбора, которые лежат в основе огромного разнообразия органической жизни, определяют также ход эволюции человека. Изучением процессов становления человека как вида, а также внутривидовых вариаций, анатомических и физиологических, занимается антропология (во многих странах эту науку называют физической антропологией, отличая от культурной антропологии, к которой относят лингвистику, доисторическую археологию и этнографию).
В 1739 шведский естествоиспытатель Карл Линней в своей  Системе природы (Systema Naturae) классифицировал человека – Homo sapiens – как одного из приматов. С тех пор среди ученых не возникало никаких сомнений в том, что именно таково место человека в зоологической системе, которая охватывает все ныне живущие формы едиными классификационными отношениями, основанными главным образом на особенностях анатомического строения. В этой системе приматы образуют один из отрядов в составе класса млекопитающих и разделяются на два подотряда: полуобезьяны (в их число входят лемуры и долгопяты) и высшие приматы. К последним относятся обезьяны (а именно обезьяны Старого света, т.е. мартышкообразные, и обезьяны Нового света), человекообразные обезьяны (гиббоны и крупные человекообразные обезьяны – орангутан, гориллы, шимпанзе) и человек. Приматы обладают многими общими специфическими признаками, отличающими их от других млекопитающих. 

Ни Линней, ни другие систематики того времени  не создали какой-либо эволюционной теории для объяснения как морфологического сходства, объединяющего Homo sapiens с родственными приматами, так и характерных отличий, позволяющих выделить его в отдельный вид. Несмотря на это, созданная Линнеем классификация сыграла заметную роль в появлении теории эволюции. Некоторые эволюционные концепции были сформулированы еще до опубликования в 1859 Происхождения видов (On the Origin of Species) Дарвина. В конце 18 в. на эти темы писали Дидро, Кант и Лаплас, а в начале 19 в. работы, в которых разнообразие органического мира объяснялось эволюционным процессом, опубликовали Ламарк и Эразм Дарвин, дед Чарлза Дарвина. 

Хотя  эти ранние концепции и позволяли  предполагать, что современный человек, возможно, произошел от более примитивных  обезьяноподобных видов, тем не менее  обнаруженные к тому времени ископаемые остатки тех, кого мы теперь признаем предшественниками современного человека, либо совсем не вызывали интереса, либо рассматривались как аномалии. Только после выхода в свет Происхождения видов гибралтарский человек, открытый в 1848, а также неандертальский череп, найденный при раскопках в 1856, привлекли внимание в качестве доказательств эволюции человека. 

Британский  биолог Томас Гексли, последователь  учения Дарвина, одним из первых дал  оценку этим скудным ископаемым остаткам, имевшим относительно небольшой  возраст. В 20 в. в Европе, Азии и Африке было обнаружено множество остатков гоминид, т.е. представителей родословной линии человека. Эти открытия совершаются и в наши дни, так что мы все больше узнаем, как и в каких временнх рамках протекала эволюция человека, а также, до некоторой степени, какие факторы могли влиять на этот процесс. 

Характерные признаки человека
Одна  из главных проблем, сразу же вставшая перед учеными, – это идентификация  той линии приматов, которая дала начало гоминидам. На протяжении 19 в. по этому поводу выдвигалось несколько  гипотез. Некоторые из них отвергли идею о тесном родстве человека с ныне живущими человекообразными обезьянами и связывали происхождение линии гоминид с теми или иными более примитивными приматами. Другие же, напротив, предполагали, что человек, шимпанзе и горилла находятся в близком родстве, так как произошли от общего предка – вида, существовавшего в течение значительного периода времени, пока он не разделился на три современные формы. Эти разногласия обозначили фундаментальную проблему: как выработать приемлемые критерии для распознавания организмов, являвшихся ступенью или ступенями в развитии гоминид, и как выделить такие ступени из всего массива данных о древних приматах. 

Гоминиды  обладают на анатомическом и биомолекулярном  уровне рядом отличий, которые позволяют выделить им особое место в ряду приматов. Одни из этих отличий первичны, а другие вторичны, т.е. возникли как адаптация к условиям, создавшимся в результате появления первичных отличий.
Передвижение  на двух ногах. 

Прямохождение – важнейший признак человека. Остальные приматы, за немногими исключениями, живут преимущественно на деревьях и являются четвероногими или, как иногда говорят, «четверорукими». Хотя некоторые мартышкообразные, например бабуины, приспособились к наземному существованию, они тем не менее передвигаются на четырех конечностях. А человекообразные обезьяны, в частности гориллы, которые в основном живут на земле, ходят в характерном частично распрямленном положении, часто опираясь на руки. 

Вертикальное  положение тела человека, конечно же, оказалось связано с множеством вторичных адаптивных изменений. В их число входят изменения в пропорциях рук и ног, модификация стопы, крестцово-подвздошного сочленения и изгибов позвоночника, а также соединения головы с позвоночным столбом. 

Увеличение мозга
Следующее из первичных отличий, ставящее человека в особое положение по отношению  к прочим приматам, – это чрезвычайно  увеличенный мозг. По сравнению, например, со средними размерами мозга шимпанзе мозг современного человека в три  раза больше; даже у Homo habilis, первого из гоминид, он был вдвое крупнее, чем у шимпанзе. Однако величина – не единственная особенность человеческого мозга: различные его области претерпели специализированное развитие, возросло число нервных клеток и изменилось их расположение. Эти, а также некоторые другие модификации наделили мозг человека его повышенными возможностями. К сожалению, ископаемые остатки черепов не дают достаточного сравнительного материала для оценки многих из этих структурных изменений. В отличие от других признаков, отмеченных выше в качестве адаптивных к прямохождению, увеличение мозга не имеет с ним прямой связи, хотя вполне вероятна опосредованная взаимосвязь между прямохождением и развитием мозга. 

Строение  зубов
Третье  из базисных изменений касается строения зубов и их использования. Произошедшие трансформации обычно связывают с изменениями в способе питания древнейшего человека. Если их причина еще может быть предметом обсуждения, то характер изменений твердо установлен. К ним относятся: уменьшение объема и длины клыков; закрытие диастемы, т.е. промежутка, в который входят выступающие клыки у приматов; изменения формы, наклона и жевательной поверхности разных зубов; развитие параболической зубной дуги, в которой передний отдел имеет округлую форму, а боковые расширяются наружу, – в отличие от U-образной зубной дуги обезьян. 

В ходе эволюции гоминид увеличение мозга, изменения в краниальных сочленениях  и трансформация зубов сопровождались значительными изменениями структуры  различных элементов черепа и лица и их пропорций. 

Различия на биомолекулярном уровне
Использование молекулярно-биологических методов  позволило по-новому подойти к  определению как времени появления  гоминид, так и их родственных  связей с остальными семействами  приматов. Результаты пока не бесспорны. К числу используемых методов относятся следующие: иммунологический анализ, т.е. сравнение иммунного ответа различных видов приматов на введение одного и того же белка (альбумина) – чем более сходна реакция, тем теснее родство; гибридизация ДНК, позволяющая оценить близость родства по степени соответствия парных оснований в двойных цепях, образуемых нитями ДНК, взятыми от разных видов; электрофоретический анализ, при котором степень сходства белков разных видов животных и, следовательно, близость этих видов оценивается по подвижности выделенных белков в электрическом поле; секвенирование белков, а именно сравнение аминокислотных последовательностей какого-то белка, например гемоглобина, у разных видов животных, что позволяет определить количество изменений в кодирующей ДНК, ответственных за выявленные различия в строении данного белка, и, более того, вычислить, за какое время такие изменения могли произойти, а тем самым и оценить, какова степень родства сравниваемых видов и как давно они разделились. 

Перечисленные методы показали очень близкое родство  и, следовательно, относительно недавнее разделение в ходе эволюции таких  видов, как горилла, шимпанзе и человек. Например, в одном из исследований по секвенированию белков было обнаружено, что различия в структуре ДНК шимпанзе и человека составляют всего 1%. 

Исследование  происхождения человека
В идеале использование характерных структурных  признаков (маркеров) дифференциации гоминид  должно обеспечить распознавание той  или иной ступени развития человека. Однако в реальности ископаемые остатки практически никогда не бывают полными. Наиболее многочисленными находками являются зубы, обычно разрозненные или с фрагментом челюсти; реже встречаются части черепа и крайне редко – кости конечностей. Таким образом, применение анатомических критериев далеко не всегда возможно. Дополнительные трудности связаны с тем, что ископаемых находок вообще мало, поэтому в выстраиваемой цепочке эволюционирующих гоминид, которая должна быть непрерывной, существуют огромные пробелы. В результате заключения, сделанные на основе столь ограниченного материала, зачастую спорны и открыты для обсуждений и пересмотра. 

Методы  датирования
Как ни важен сам факт обнаружения ископаемых остатков, он не должен затмевать важности выполнения раскопок таким образом, чтобы обеспечивать надежную оценку возраста самих находок. Мы говорим о раскопках, хотя многие находки делаются на поверхности, и в этом случае очень трудно определить их возраст. Несколько находок было сделано на большом удалении от мест их происхождения, и в некоторых случаях в результате кропотливой работы удавалось найти соответствующие реликтовые остатки в местах их первоначального расположения. Так было, например, с находкой гигантских зубов доисторической обезьяны Gigantopithecus blacki в аптечных магазинах южного Китая; в последующем многочисленные другие образцы были раскопаны в других частях Азии. 

Перечень  методов, с помощью которых возможна датировка ископаемых остатков, уже  достаточно велик и с каждым годом  становится все длиннее. Эти методы можно классифицировать по тому, дают ли они абсолютные или относительные датировки, и по тому, приложимы ли они ко всему плейстоцену или даже кайнозойской эре в целом или же только к относительно недавнему геологическому прошлому. 

Абсолютной  датировкой считается обычно любая  дата, включая оценочную, указываемая  в системе нашего солнечного календаря; так, датировка «около миллиона лет  тому назад» принимается как абсолютная, поскольку бoльшая точность не обеспечивается имеющимися техническими возможностями. Относительная датировка – это датировка по отношению к другим явлениям, чей абсолютный возраст может быть известен или неизвестен. Например, кажется вероятным, что т.н. яванский человек древнее, чем т.н. пекинский человек. Но у нас нет уверенности в абсолютной датировке ни того, ни другого, хотя их возраст можно, по-видимому, отнести к периоду от 400 до 500 тыс. лет тому назад. 

Первоначально датирование производилось путем  идентификации геологического слоя, в котором была сделана находка, с последующим определением ее древности на основе реконструкции последовательности залегания различных слоев. Во многих случаях использовались также данные о сопутствующих ископаемых остатках животных и растений известного возраста. Эти методы позволяют устанавливать относительный возраст, но для определения абсолютного возраста они недостаточно надежны. 

Современные методы определения абсолютного  возраста впервые появились в 1940-е  годы. Часть из них связана с  измерением распада радиоактивных  изотопов, присутствующих в органических и неорганических материалах. Зная скорость распада данного изотопа, т.н. период полураспада, можно определить возраст ископаемых остатков путем сравнения относительного содержания в них остаточного количества этого изотопа с его количеством в живых организмах. Удобные для такого датирования изотопы – это углерод-14 (превращающийся в азот) и уран-238 (распадающийся с образованием тория-230 и радия-236). Когда ископаемые остатки обнаруживаются в породе, богатой калием, применяют калий-аргонный метод, основанный на измерении распада калия-40 (превращающегося в аргон-40); таким путем устанавливают возраст породы и, исходя из этого, датируют находку. Поскольку процессы радиоактивного распада достаточно стабильны и предсказуемы, возраст остатков определяется обычно вполне достоверно. Калий-аргонный метод является основным при датировании плиоценовых и плейстоценовых находок, тогда как углеродный метод, хотя и остается наиболее ценным средством абсолютного датирования, имеет намного меньший диапазон – ок. 50 тыс. лет.
Несколько менее надежен метод аминокислотного  датирования. Многие химические соединения существуют в двух формах, которые  различаются только по пространственной структуре – в какой-то мере аналогично перчаткам на левую и правую руки. Большинство аминокислот в костях живых организмов являются L-изомерами (формы «левой руки»). Когда организм погибает, L-изомеры постепенно превращаются в D-изомеры (формы «правой руки»). Измеряя соотношение D- и L-изомеров, определяют возраст костей; однако в связи с тем, что скорость такого превращения зависит от температуры, а температурные условия, которые в прошлом действовали на ископаемые остатки, оценить трудно, можно получить результат с довольно большой ошибкой. 

Один  из методов датирования основан на регистрации следов тех изменений, которые претерпевают магнитные поля Земли. Минералы горных пород сохраняют отпечаток магнитных полей Земли, существовавших в период их формирования, как и предметы из обожженной глины, например горшки. Таким образом, изменения магнитного поля фиксируются во времени. Если для большей точности провести соответствующую калибровку, эти древние вариации магнитных полей можно использовать в целях датирования. 

Эволюция: к австралопитеку
Самые первые и наиболее примитивные млекопитающие появились в далекую геологическую эпоху, известную как мезозойская эра, по-видимому, в ее начальный период, называемый триасовым, ок. 200 млн. лет тому назад. В течение более 100 млн. лет эти очень маленькие существа не играли сколь-либо значительной роли; преобладающими животными на громадном отрезке времени были динозавры и другие рептилии. Вероятно, ко времени завершения мелового периода (ок. 75 млн. лет тому назад) на Земле появились наши отдаленные предки – первые приматы. По-видимому, это были мелкие зверьки, питавшиеся травой и плодами и приспособившиеся к древесному образу жизни. Затем мезозойская эра подошла к концу, динозавры вымерли, и началась кайнозойская эра. На протяжении первых двух ее эпох – палеоцена и эоцена, т.е. ок. 40–60 млн. лет тому назад, к семейству Paromomyidae, паромомиид (приматов) добавилось еще два крупных семейства приматов, вероятно древних родственников полуобезьян – лемуров и долгопятов. Точнее говоря, считается, что появление лемуров и долгопятов произошло в конце эоцена. 

Эта ранняя стадия эволюции приматов характеризуется  тремя важными изменениями: мозг стал значительно крупнее, морда  сильно уменьшилась, а передние конечности становились все более приспособленными для хватательных движений, причем вместо когтей появились плоские ногти. 

В позднем  эоцене обозначилась также линия, ведущая  к обезьянам, человекообразным обезьянам  и человеку; ее начало связывают  с появлением семейства Omomyidae, происходящего от наиболее древних приматов – паромомиид. Формируясь, линия высших приматов, или антропоидов, приобрела некоторые особенности, в частности значительно увеличилась подвижность передних конечностей и возросла зависимость от зрения. 

Следующая геологическая эпоха – олигоцен, условно датируемая периодом примерно от 38 до 25 млн. лет тому назад, богата ископаемыми находками, но эти находки  трудно связать с эволюцией человека. В это время линия высших приматов начинает разделяться на ветви, идущие в нескольких направлениях: к цебоидам (Ceboidea), или обезьянам Нового света; к церкопитекоидам (Cercopithecoidea), или обезьянам Старого света (мартышкообразным); и к гоминоидам (Hominoidea), т.е. к надсемейству, включающему современного человека, горилл, шимпанзе, орангутанов и гиббонов. 

Одна  из находок эпохи олигоцена вызвала  большие споры в научной среде. Это был парапитек (Parapithecus), найденный  в Файюме (Египет). Многие антропологи  полагают, что существо такого типа было древним предком современных гоминоидов, другие же полностью исключают саму принадлежность парапитека к приматам. Трудность проистекает из ограниченности имеющихся остатков этого существа – только нижняя челюсть – и из сложности определения его зубной системы (типа и числа зубов). По мнению некоторых антропологов, парапитек родствен амфипитеку (Amphipithecus), обнаруженному в Бирме, хотя его остатки могут датироваться эпохой эоцена. Вкратце, важность этой интерпретации состоит в следующем: если она правильна, то и человекообразные обезьяны, и человек могут восходить напрямую к первым приматам, минуя стадию церкопитекоидов (обезьян Старого света), поскольку у амфипитека и парапитека обнаруживаются антропоидные характеристики на тот момент, когда еще не произошло полного утверждения церкопитекоидов; если же нет, то скорее всего такая стадия существовала.
Вовлеченной в подобного же рода дискуссии  оказалась и более поздняя  находка, известная как ореопитек (Oreopithecus), сделанная более полувека назад, но ставшая центром новой полемики в 1958, когда были обнаружены новые ископаемые остатки. К сожалению, эта спорная находка дошла до нас в очень плохом состоянии, спрессованной в слое лигнита. Как полагают, ореопитек существовал в нижнем плиоцене ок. 10 млн. лет тому назад. На основании этого нового свидетельства эксперты по анатомии обезьян считают, что находка не принадлежит к церкопитекоидному типу. Если данное мнение подтвердится и ореопитек будет вполне надежно связан с более поздними гоминоидами, это станет дополнительным свидетельством в пользу того, что линия гоминоидов начала обособляться, минуя стадию подобия мартышкообразных. 

Обращаясь вновь к эпохе олигоцена, упомянем ряд похожих находок из Европы и Африки. В их числе: проплиопитек (Propliopithecus) и прохилобат (Prohylobates) – оба из Египта, плиопитек (Pliopithecus) – из Франции, и лимнопитек (Limnopithecus) – из Кении. По мнению большинства специалистов, эти ископаемые не относятся к предкам человека, но ведут более или менее прямо к современным гиббонам. Однако, как полагают, они были схожи в важных элементах с каким-то другим современным им приматом – предположительно предком крупных человекообразных обезьян и человека. Эпоха олигоцена длилась ок. 13 млн. лет, и у нас нет возможности датировать ископаемые остатки точнее. Тем не менее очевидно, что олигоцен был периодом лучевого адаптивного расхождения антропоидов. 

Из следующей  эпохи миоцена до нас дошла  чрезвычайно интересная и, по-видимому, связанная с предыдущей группа ископаемых остатков. Это дриопитеки (Dryopithecinae) –широко распространенная группа существ, по размерам сравнимых с шимпанзе и живших в разных частях Африки, Европы и Азии. По некоторым признакам, например по жевательной поверхности моляров, дриопитеков можно расположить на линии происхождения гоминид или, точнее, вблизи той точки, от которой началось расхождение человека и обезьян. Одно из этих ископаемых существ – рамапитек (Ramapithecus), найденный в Индии, – считается некоторыми учеными самым ранним из гоминид. Его возраст оценивают в 9–12 млн. лет. 

Представление о рамапитеке как первом из гоминид  было сильно поколеблено, когда позднее  в Пакистане были обнаружены остатки  сходного существа, названного Sivapithecus indicus. Фактически ряд антропологов в  настоящее время использует название Sivapithecus для всех остатков Ramapithecus. Изучение остатков сивапитека показало, что он ближе к орангутану, чем к африканским видам человекообразных обезьян. (По существу, это подтверждает данные биомолекулярных исследований, также свидетельствующие о том, что орангутан – более отдаленный родственник человека, чем горилла и шимпанзе, и его отделение в ходе эволюции от группы «человек – шимпанзе – горилла» произошло в период от 10 до 11 млн. лет назад.) 

Австралопитек
До недавнего  времени самым большим белым  пятном в ископаемой летописи эволюции человека оставался плиоцен – эпоха длительностью ок. 6 млн. лет, завершившаяся ок. 2 млн. лет назад. Для изучающих эволюцию человека плиоцен особенно важен, поскольку он предшествует непосредственно эпохе плейстоцена, в котором были впервые обнаружены ясные и неоспоримые ископаемые остатки гоминид, известных как австралопитековые (Australopithecinae).
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.