На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Лекции Многочлены Чебышева. Многочлены равномерных приближений. Экономизация степенных рядов. Свойства многочлена Чебышева. Интерполяция по Чебышевским узлам. Многочлены равномерных приближений. Теорема Вейерштрасса. Кусочно-квадратичная аппроксимация.

Информация:

Тип работы: Лекции. Предмет: Математика. Добавлен: 06.03.2009. Сдан: 2009. Уникальность по antiplagiat.ru: --.

Описание (план):


10
ЛЕКЦИЯ №9
МНОГОЧЛЕНЫ ЧЕБЫШЕВА

1. Определение и свойства
2. Интерполяция по Чебышевским узлам
3. Многочлены равномерных приближений
4. Экономизация степенных рядов
Многочленом Чебышева n-ой степени называется функция
Tn(x)=cos (narccos) n=0,1,2 …,x[-1;1] ; (9.1)

Докажем, что при любом n=0,1,2
n=0: T0(x)=cos0=1;
n=1: T1(x)=cos(arccos x)=x;
n=2: T2(x) =cos(2arccos x);
Обозначим б=arccosx
Tn(x)=cos2б ;
Tn+1(x)=cos((n+1)б) ;
Tn-1(x)=cos((n-1)б) ;
cos((n+1)б)+ cos((n-1)б)-2cos(2nб/ б)cos(2б/ б)=2 cosnб cosб;
Tn+1(x)+ Tn-1(x)=2 T1(x) Tn(x);
Tn+1(x)= 2xTn(x)- Tn-1(x); (9.2)

Свойства многочлена Чебышева:

1. Все функции Tn(x) являются многочленами при n=0,1,2,…
2. Степени этих многочленов возрастают с увеличением n, причем старший член Tn(x)=2n-1xn
3. Многочлены Tn(x) при четных n выражаются через четные функции , при нечетных n-через нечетные функции.
Проверим:
T2(x) =2х2-1
T3(x) =2х (2х2-1) =4х3-2х
T4(x) = 2х (4х3-3х)-2х2+1=23х4-3х2+1
4. На отрезке [-1;1] многочлен Tn(x) имеет ровно n различных действительных корней, которые рассчитываются по формуле:
Докажем:
Так как arccosx[0; Р];k=0,1,…n-1,чтобы туда попадал arcos
5. Корни многочлена Чебышева перемножаются, чередуются с точками их экстремума, причем максимум
Tn(x) на [-1;1] равен 1,т.е
Для точек экстремума существует связь:
Введем нормированный многочлена Чебышева (старший коэффициент =1, перед х в максимальной степени)
(9.3)

Теорема Чебышева

Из всех многочленов степени n со старшим коэффициентом = 1, нормированный многочлен Чебышева отклоняется от нуля на отрезке [-1;1] , т.е не существует многочлена Рn *(x), что :

max | Рn*(x)| < max | T^n(x)|

[-1;1] [-1;1] Доказательство не нужно.

Интерполяция по Чебышевским узлам

Задача: Пусть есть некоторая функция f(x), определенная на отрезке [a;b]. Как расположить на отрезке [a;b] n+1 узел интерполяции таким образом, чтобы минимизировать максимальное отклонение интерполяционного полинома Лагранжа от f(x), т.е ошибку аппроксимации.

Остаточный член полинома Лагранжа

Необходимо минимизировать этот максимум, т.е необходимо найти такие узлы xk , которые минимизировали бы

Сведем [a;b] к отрезку [-1;1]

Должна существовать связь х[a;b] с t [-1;1]

Связь: x= Ct+D

C-коэффициент сжатия (растяжения, D-параллельный перенос)

Если t=1

Если t=-1

Тогда:

(9.4)

Для того чтобы минимизировать (9.4), необходимо найти такие корни

tk[-1;1], , при котором Рn+1(t) будет минимальным.

По теореме Чебышева полином Тn+1нормирован многочленом Чебышева, наименее отклонен от нуля на [-1;1], поэтому в качестве искомых корней необходимо взять корни многочлена Чебышева на [-1;1]

(рассмотрим полином n+1-ой степени)

(9.5)

Узлы интерполяции, определим по формуле (9.5) обеспечивают min, max ошибку аппроксимации при помощи интерполяционных полиномов.

Многочлены равномерных приближений

Если функция f(x) ?-но дифференцируема на [a;b] и в качестве узлов интерполяции берутся корни многочленов Чебышева, приведенные к [a;b], то справедливо:

Т.е имеет место равномерная сходимость последовательности интерполяционного полинома Лагранжа функции f(x).

Теорема Вейерштрасса: для любой непрерывной функции f(x) на [a;b] найдется полином Qn(x), что |f(x)- Рn(x)| < о для любой о>0 , любое х[a;b].

Т.е для любой f(x) непрерывной на [a;b],может быть построена аппроксимирующий наилучший полином, который минимизирует максимальное отклонение между f(x) и Qn(x). Такие полиномы называют многочленами наилучших равномерных приближений.

К сожалению, общий вид таких полиномов и способы построения не известны.
Экономизация степенных рядов
Ряд Тейлора представляет собой локальную аппроксимацию для f(x) степенной функции вида xn можно заменить многочлен Чебышева и получить разложение по этим многочленам вместо степенного ряда:
Такой процесс называется экономизацией степенного ряда.
Разложение по многочленам Чебышева имеет меньшую максимальную погрешность.
ЛЕКЦИЯ №10,11
ИНТЕРПОЛЯЦИОННЫЕ СПЛАЙНЫ
Когда интерполяционный отрезок [a;b] велик, нет, основания считать, функцию f(x) достаточно гладкой, на [a;b], то нельзя повышать точность аппроксимации за счет увеличения степени интерполяционного многочлена.
Связано это с тем, что у многочлена n-ой степени может быть n-1 точка экстремума. При n>? график многочлена начинает сильно колебаться
Такое явление называют феноменом Рунге.
Поэтому более перспективным является применение кусочно-полиномиальной аппроксимации, при которой аппроксимирующая функция составляется из отдельных многочленов (сплайнов). Каждый из которых (одинаковы и наибольшей степени) определен на своем участке отрезка [a;b].
Рассмотрим аппроксимацию кусочно-линейной функции (линейный сплайн).
Пусть f(x) задана таблично на [a;b], т. е определены некоторые узлы интерполяции a?x0<x1<…<xn?b
кусочно-линейная функция
Необходимо: ц(xi)=yi=f(xi), для приближения функции.
Определим ai и bi.
x=x0: ц(x0)=f(x0)=y0 a1x0+b1=y0
x=x1: ц(x1)=f(x1)=y1 a1x1+b1=y1
a2x1+b2=y1
x0 x1 x2
Получим систему:
а0x0+b1=y0 (решаем по отдельности каждую систему)
a2x1+b2=y1

a2x1+b2=y1
a2x2+b2=y2 (10.2)
anxn-1+bn=yn
anxn +bn= yn
Таким образом, получена система из 2n уравнений для поиска 2n неизвестных. Причем, система (10.2) образована из n систем линейных уравнений для 2-х неизвестных, каждая из которых может решаться независимо от остальных.
Кусочно-линейная функция ц(x) вида (10.1) внутри интервала (хi-1;xi), непрерывна и дифференцируема, а в точках xi, непрерывна, но не дифференцируема (в этих точках к графику функции невозможно построить касательную).

Кусочно-квадратичная аппроксимация

Пусть f(x) задана таблично на [a;b], но n=2m (четно) a?x0<x1<…<xn?b

Чтобы функция приближала f(x) наложим ограничения ц(xi)=yi=f(xi), .

Общее число узлов 2n+1, если n-четное.

Для нахождения неизвестных коэффициентов ak,bk,ck необходимо построить 3m условий.

k=1

[x0;x2]

Обобщим, получим систему:

(10.4)

Для нахождения неизвестных имеем 3m условий. При каждом значении можем и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.