На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


курсовая работа Метод сжатия текстовой информации

Информация:

Тип работы: курсовая работа. Добавлен: 13.10.2012. Сдан: 2010. Страниц: 19. Уникальность по antiplagiat.ru: < 30%

Описание (план):


 
СОДЕРЖАНИЕ 
 
 

    ВВЕДЕНИЕ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    5
1. КРАТКИЙ  ОБЗОР АЛГОРИТМОВ РЕШЕНИЯ ЗАДАЧ 
     ДАННОГО ТИПА . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      6
       1.1 Математическое программирование . . . . . . . . . . . . . . . . . . .      6
       1.2 Табличный симплекс - метод . . . . . . . . . . . . . . . . . . . . . . . . . .     7
       1.3 Метод искусственного базиса . . . . . . . . . . . . . . . . . . . . . . . . .      8
       1.4 Модифицированный симплекс - метод  . . . . . . . . . . . . . . . . .       8
2. СОДЕРЖАТЕЛЬНАЯ  ПОСТАНОВКА ЗАДАЧИ . . . . . . . . . . . .    10
3. РАЗРАБОТКА  И ОПИСАНИЕ АЛГОРИТМА РЕШЕНИЯ
    ЗАДАЧИ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   11
           3.1 Построение математической модели  задачи . . . . . . . . . . . . . .   11
           3.2 Решение задачи вручную . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   12
4. АНАЛИЗ  МОДЕЛИ НА ЧУВСТВИТЕЛЬНОСТЬ . . . . . . . . . . . .    16
       4.1 Построение двойственной задачи  и её численное 
             решение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     16
       4.2 Определение статуса ресурсов . . . . . . . . . . . . . . . . . . . . . . . . .     16
       4.3 Определение значимости ресурсов . . . . . . . . . . . . . . . . . . . . . .    17
       4.4 Определение допустимого интервала  изменения запаса 
            ресурсов . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      17
      4.5 Исследование зависимости оптимального  решения от 
            изменений запасов ресурсов . . . . . . . . . . . . . . . . . . . . . . . . . . .      19 
 
 
 
 
 
 

- 4 - 

5. ГРАФИЧЕСКОЕ  ПРЕДСТАВЛЕНИЕ ПОЛУЧЕННЫХ 
    РЕЗУЛЬТАТОВ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     20   
6. ВЫВОДЫ  И РЕКОМЕНДАЦИИ ПО ПРАКТИЧЕСКОМУ 
    ИСПОЛЬЗОВАНИЮ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     22
    ПРИЛОЖЕНИЕ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    23
    ЛИТЕРАТУРА  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      11
 

- 5 - 
 

ВВЕДЕНИЕ 
 

       Цель данного курсового проекта  - составить план производства  требуемых изделий, обеспечивающий максимальную прибыль от их реализации, свести данную задачу к задаче линейного программирования, решить её              симплекс  -  методом  и  составить программу для решения задачи этим методом  на ЭВМ.
 

 - 6 - 

1. КРАТКИЙ ОБЗОР АЛГОРИТМОВ РЕШЕНИЯ ЗАДАЧ
     ДАННОГО ТИПА  

    1.1 Математическое программирование  

    Математическое  программирование занимается изучение экстремальных задач и поиском методов их решения. Задачи математического программирования формулируются следующим образом :  найти экстремум некоторой функции многих переменных f ( x1, x2, ... , xn ) при ограничениях                gi ( x1, x2, ... , xn ) * bi ,  где gi - функция, описывающая ограничения,  *  -  один из следующих знаков ?=? ,  а bi - действительное число, i = 1, ... , m.                      f  называется  функцией цели ( целевая функция ).
    Линейное  программирование - это раздел математического программирования, в котором рассматриваются методы решения экстремальных задач с линейным функционалом и линейными ограничениями, которым должны удовлетворять искомые переменные.
    Задачу  линейного программирования можно  сформулировать так . Найти max

    при условии :          a11 x1 + a12 x2 + . . . + a1n xn ? b1 ;
                                                       a21 x1 + a22 x2 + . . . + a2n xn ? b2 ;
                                                        .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .
                                      am1 x1 + am2 x2 + . . . + amn xn ? bm ;
                                    x1 ? 0,  x2 ? 0,  . . . ,  xn ? 0 .
    Эти ограничения называются условиями неотрицательности. Если все ограничения заданы в виде строгих равенств, то данная форма называется канонической.  

    - 7 - 

    В матричной форме  задачу линейного  программирования записывают следующим образом. Найти   
    max cT x
    при условии
    A x  ?  b ;
    ?  0 ,
    где А - матрица ограничений размером ( m?n), b(m?1) - вектор-столбец свободных членов, x(n ? 1) - вектор переменных,  сТ = [c1, c2, ... , cn ] - вектор-строка коэффициентов целевой функции.
    Решение х0 называется оптимальным, если для него выполняется условие        сТ х0  ? сТ х ,  для всех х I R(x).
    Поскольку  min f(x)  эквивалентен  max [ - f(x) ] , то задачу линейного программирования всегда можно свести к эквивалентной задаче максимизации. 
    Для решения задач данного типа применяются  методы:
    1) графический;
    2) табличный ( прямой, простой ) симплекс - метод;
    3) метод искусственного базиса;
    4) модифицированный симплекс - метод;
    5) двойственный симплекс - метод. 
 
       1.2 Табличный симплекс - метод 

    Для его применения необходимо, чтобы  знаки в ограничениях были вида       “ меньше либо равно ”, а компоненты вектора b - положительны.
    Алгоритм  решения сводится к следующему :
     Приведение  системы ограничений к каноническому  виду путём введения   дополнительных переменных для приведения неравенств к равенствам.
     Если  в исходной системе ограничений  присутствовали знаки “ равно  ”  

    - 8 - 

    или    “ больше либо равно ”, то в указанные  ограничения добавляются 
    искусственные переменные, которые так же вводятся и в целевую функцию со знаками, определяемыми типом оптимума.
     Формируется  симплекс-таблица.
     Рассчитываются  симплекс-разности.
     Принемается  решение об окончании либо  продолжении счёта.
     При  необходимости выполняются итерации.
     На  каждой итерации определяется  вектор, вводимый в базис, и  вектор, выводимый из базиса. Таблица пересчитывается по методу Жордана-Гаусса или каким-нибудь другим способом. 

    1.3 Метод  искусственного базиса 

    Данный  метод решения применяется при  наличии в ограничении знаков        “ равно ”, “ больше либо равно  ”, “ меньше либо равно ” и является модификацией табличного метода. Решение системы производится путём ввода искусственных переменных со знаком, зависящим от типа оптимума, т.е. для исключения из базиса этих переменных последние вводятся в целевую функцию с большими отрицательными коэффициентами m ,  а в задачи минимизации - с положительными m . Таким образом из исходной получается новая m - задача.
    Если  в оптимальном решении m - задачи нет искусственных переменных, это решение есть оптимальное решение исходной задачи. Если же в оптимальном решении m - задачи хоть одна из искусственных переменных будет отлична от нуля, то система ограничений исходной задачи несовместна и исходная задача неразрешима. 

       1.4 Модифицированный симплекс - метод
    В основу данной разновидности симплекс-метода положены такие особен - 

    - 9 - 

    ности линейной алгебры , которые позволяют  в ходе решения задачи работать с  частью матрицы ограничений. Иногда метод называют методом обратной матрицы.
    В процессе работы алгоритма происходит спонтанное обращение матрицы ограничений по частям, соответствующим текущим базисным векторам. Указанная способность делает весьма привлекательной машинную реализацию вычислений вследствие экономии памяти под промежуточные переменные и значительного сокращения времени счёта. Хорош для ситуаций, когда число переменных n значительно превышает число ограничений m.
    В целом, метод отражает традиционные черты общего подхода к решению  задач линейного программирования, включающего в себя канонизацию условий задачи, расчёт симплекс-разностей, проверку условий оптимальности, принятие решений о коррекции базиса и исключение Жордана-Гаусса.
    Особенности заключаются в наличии двух таблиц - основной и вспомогательной, порядке их заполнения и некоторой специфичности расчётных формул.
 

     - 10 - 

2. СОДЕРЖАТЕЛЬНАЯ ПОСТАНОВКА ЗАДАЧИ 

      Для производства двух видов  изделий А и В используется  три типа технологического оборудования. На производство единицы изделия А идёт времени, часов :  оборудованием 1-го типа - а1 ,   оборудованием 2-го типа - а2 ,  оборудованием 3-го типа - а3 . На производство единицы изделия В идёт времени, часов :  оборудованием 1-го типа - b1 , оборудованием 2-го типа - b2 ,, оборудованием 3-го типа - b3 .
    На  изготовление всех изделий администрация предприятия может предоставить оборудование 1-го типа не более, чем на  t1 ,  оборудование 2-го типа не более, чем на  t2 ,  оборудование 3-го типа не более, чем на  t3  часов.
    Прибыль от реализации единицы готового изделия  А составляет a рублей, а изделия В -  b рублей.
    Составить план производства изделий А и В, обеспечивающий максимальную прибыль от их реализации. Решить задачу простым симплекс-методом. Дать геометрическое истолкование задачи, используя для этого её формулировку с ограничениями-неравенствами.
    а1 = 1          b1 = 5          t1 = 10          a  = 2
    а2 = 3          b2 = 2          t2 = 12          b = 3
    а3 = 2          b3 = 4          t3 = 10              
 
 
 
 
 
 
 
 

- 11 - 

    3. РАЗРАБОТКА И ОПИСАНИЕ  АЛГОРИТМА РЕШЕНИЯ  ЗАДАЧИ 

           3.1 Построение математической модели  задачи 

  На произв-во изделия А, часов На произв-во изделия B, часов Предпр-е предоставит, часов
Оборуд-е 1го типа 1 5 10
Оборуд-е 2го типа 3 2 12
Оборуд-е 3го типа 2 4 10
Прибыль от реализации, за ед. изд-я 2 3  
 
    Построение  математической модели осуществляется в три этапа :
    1. Определение  переменных, для которых будет  составляться математическая модель.
       Так как требуется определить  план производства изделий А  и В, то переменными модели будут:
        x1 - объём производства изделия А, в единицах;
          x2 - объём производства изделия В, в единицах.
    2. Формирование  целевой функции.
        Так как прибыль от реализации  единицы готовых изделий А  и В известна, то общий доход  от их реализации составляет  2x+ 3x ( рублей ). Обозначив общий доход через F, можно дать следующую математическую формулировку целевой функции : определить допустимые значения переменных  x1  и x2 , максимизирующих целевую функцию F =    2x + 3x2 .
    3. Формирование  системы ограничений.
      При определении плана производства  продукции должны быть учтены  ограничения на время, которое администрация предприятия сможет пре - 

    - 12 - 

       доставить на изготовления всех  изделий. Это приводит к следующим  трём ограничениям :
       x+ 5x2    ?    10 ;       3x + 2x2   ?  12 ;      2x+ 4x2  ?  10 .
       Так как объёмы производства  продукции не могут принимать  отрицательные значения, то появляются  ограничения неотрицательности  :
    x? 0 ;                x2 ? 0 .
       Таким образом, математическая  модель задачи представлена в  виде : определить план  x1 , x2 , обеспечивающий максимальное значение функции :
    max F = max ( 2x+ 3x2 )
       при наличии ограничений :
    x + 5x2    ?    10 ;
    3x + 2x2   ?  12 ;     
    2x + 4x2  ?  10 .
    x? 0 ;  x2 ? 0 . 

    3.2 Решение  задачи вручную 

    Табличный метод ещё называется метод последовательного улучшения оценки. Решение задачи осуществляется поэтапно.
    1. Приведение задачи к форме  :
    x + 5x2    ?    10 ;
    3x + 2x2   ?  12 ;     
    2x + 4x2  ?  10 .
    x? 0 ;  x2 ? 0 .
    2. Канонизируем  систему ограничений : 
     
     
     

    - 13 - 

      x+ 5x2   + x3                        =  10 ;
    3x + 2x2          + x4         = 12 ;     
    2x + 4x2                  + x5 = 10 .
    x? 0 ;  x2 ? 0 .
    A1         A2     A3    A4    A   A0
    3. Заполняется  исходная симплекс-таблица и рассчитываются симплекс-разности по формулам :
    d0 =   - текущее значение целевой функции
    di =    - расчёт симплекс-разностей, где j = 1..6  .
    C 2 3 0 0 0
Б Cб A0 A1 A2 A3 A4 A5
A3 0 10 1 5 1 0 0
A4 0 12 3 2 0 1 0
A5 0 10 2 4 0 0 1
  d 0 -2 -3 0 0 0
 
    Так как при решении задачи на max не все симплекс-разности положительные, то оптимальное  решение можно  улучшить.
    4. Определяем направляющий столбец  j*. Для задачи на max он определяется минимальной отрицательной симплекс-разностью. В данном случае это вектор А2
    5. Вектор i*, который нужно вывести из базиса, определяется по отношению :
    min 
  при аi j > 0
 
 

    - 14 - 

    В данном случае сначала это А3 .
    5. Заполняется новая симплекс-таблица  по исключеню Жордана - Гаусса :
       а). направляющую строку  i*  делим на направляющий элемент :   
    a i j = a i j / a i j    , где j = 1..6
       б). преобразование всей оставшейся части матрицы :
    a ij = aij - a i j ? aij    , где i ? i ,  j ? j*
    В результате преобразований получаем новую симплекс-таблицу : 

    C 2 3 0 0 0
Б Cб A0 A1 A2 A3 A4 A5
A2 3 2 1/5 1 1/5 0 0
A4 0 8 13/5 0 -2/5 1 0
A5 0 2 6/5 0 -4/5 0 1
  d 6 -7/5 0 3/5 0 0
 
    Повторяя  пункты 3 - 5, получим следующие таблицы : 

    C 2 3 0 0 0
Б Cб A0 A1 A2 A3 A4 A5
A2 3 5/3 0 1 1/3 0 -1/6
A4 0 11/3 0 0 4/3 1 -13/6
A1 2 5/3 1 0 -2/3 0 5/6
  d 8  1/3 0 0 -1/3 0 7/6
 
    C 2 3 0 0 0
Б Cб A0 A1 A2 A3 A4 A5
A2 3 3/4 0 1 0 -1/4 3/8
A3 0 11/4 0 0 1 3/4 -13/8
A1 2 7/2 1 0 0 1/2 -1/4
  d 9  1/4 0 0 0 1/4 5/8
 
 
    - 15 - 

    Так как все симплекс-разности положительны, то оптимальное решение найдено :
    X = ( 7/2 ,   3/4 ,   11/4 ,   0 ,   0  )   ( единиц )
    max F = 9  1/4  ( рублей )  
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     

    - 16 - 

4. АНАЛИЗ МОДЕЛИ  НА ЧУВСТВИТЕЛЬНОСТЬ 

       4.1 Построение двойственной задачи и её численное решение 

    Проведение  анализа на чувствительность связано  с теорией двойственности, поэтому в курсовой работе необходимо построить двойственную задачу и найти её численное решение.
    Для рассматриваемой модели двойственная задача имеет вид :
    min  T( y ) = min ( 10y1 + 12y2 + 10y3 )   при условиях
                                                        y1 + 3y2 + 2y3 ? 2                А1
                                                                                5y1 + 2y2 + 4y3 ? 3                А2
                                                   y1 ? 0 ,   y2 ?0 ,   y3 ? 0.          А3,  А4,  А5
    Оптимальное решение двойственной задачи получается  при решении прямой задачи из последней  симплекс-таблицы. В результате получаем оптимальное решение двойственной задачи :
    Yопт
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.