На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Контрольная Теория вероятностей. Коэффициенты использования рабочего времени. Закон распределения случайной величины. Функция плотности. Математическое ожидание. Закон распределения с математическим ожиданием. Статистика. Доверительный интервал. Выборочная средняя.

Информация:

Тип работы: Контрольная. Предмет: Математика. Добавлен: 24.11.2008. Сдан: 2008. Уникальность по antiplagiat.ru: --.

Описание (план):


ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ РФ
НОУ ВПО «С.И.Б.У.П.»
Контрольная работа
по дисциплине «Высшая математика»
Вариант 13.

Выполнила студентка
Проверил:
Красноярск, 2008г.

ТЕОРИЯ ВЕРОЯТНОСТЕЙ

Задание 1

Коэффициенты использования рабочего времени у двух комбайнов соответственно равны 0,8 и 0,6. Считая, что остановки в работе каждого комбайна возникают случайно и независимо друг от друга, определить относительное время (вероятность: а) работы только одного комбайна; б) простоя обоих комбайнов.

А) Данное событие (работает только один комбайн) есть сумма 2 несовместных событий:

A = B + C,
где B: работает только 1-й (2-й простаивает); C: работает только 2-й (1-й простаивает). Каждое из этих событий есть произведение 2 независимых событий:
B = D;
C = E,
где D, E - события, состоящие в том, что 1-й и 2-й комбайны работают; , - противоположные им события, т.е. 1-й и 2-й комбайны не работают. Их вероятности:
P (D) = 0,8
P (E) = 0,6
P () = 1 - P (D) = 1 - 0,8 = 0,2
P () = 1 - P (E) = 1 - 0,6 = 0,4
По теоремам сложения и умножения вероятностей
P (A) = P (B) + P (C) = P (D) P () + P () P (E) = 0,8 * 0,4 + 0,2 * 0,6 = 0,44
Б) Данное событие (оба комбайна простаивают) есть произведение 2 независимых событий:
F =
По теореме умножения вероятностей
P (F) = P () P () = 0,2 * 0,4 = 0,08

Задание 2

Вероятность того, что пассажир опоздает к отправлению поезда, равна 0,01. Найти наиболее вероятное число опоздавших из 800 пассажиров и вероятность такого числа опоздавших.
Происходит n = 800 независимых испытаний, в каждом из которых данное событие (опоздание на поезд) происходит с вероятностью p = 0,01. Наиболее вероятное число наступлений события удовлетворяет неравенствам
np - q ? k < np + p,
где q = 1 - p = 1 - 0,01 = 0,99
800 * 0,01 - 0,99 ? k < 800 * 0,01 + 0,01
7,01 ? k < 8,01
k = 8
Так как n велико, p мала, соответствующую вероятность найдем по формуле Пуассона:
Pn (k) = ,
где a = np = 800 * 0,01 = 8

P800 (8) = = 0,140

Задание 3

На двух автоматических станках производятся одинаковые изделия, даны законы распределения числа бракованных изделий, производимых в течение смены на каждом из них для первого и для второго.
X 0 1 2 Y 0 2
p 0,1 0,6 0,3 p 0,5 0,5
Составить закон распределения случайной величины Z = X + Y числа производимых в течение смены бракованных изделий обоими станками. Составить функцию распределения и построить ее график. Проверить свойство математического ожидания суммы случайных величин.
Величина Z может принимать значения:
0 + 0 = 0
0 + 2 = 2
1 + 0 = 1
1 + 2 = 3
2 + 0 = 2
2 + 2 = 4
Вероятности этих значений (по теоремам сложения и умножения вероятностей):
P (Z = 0) = 0,1 * 0,5 = 0,05
P (Z = 1) = 0,6 * 0,5 = 0,3
P (Z = 2) = 0,1 * 0,5 + 0,3 * 0,5 = 0,2
P (Z = 3) = 0,6 * 0,5 = 0,3
P
(Z = 4) = 0,3 * 0,5 = 0,15
Закон распределения:
Z 0 1 2 3 4
p 0,05 0,3 0,2 0,3 0,15
Проверка:
? pi = 0,05 + 0,3 + 0,2 + 0,3 + 0,15 = 1.
Функция распределения
F (x) = P (X < x) = =
Математические ожидания:
M (x) = ? xipi = 0 * 0,1 + 1 * 0,6 + 2 * 0,3 = 1,2
M (y) = ? yipi = 0 * 0,5 + 2 * 0,5 = 1
M (z) = ? zipi = 0 * 0,05 + 1 * 0,3 + 2 * 0,2 + 3 * 0,3 + 4 * 0,15 = 2,2
M (z) = M (x) + M (y) = 1,2 + 1 = 2,2

Задание 4

Случайная величина X задана функцией распределения
F (x) =
Найти: 1) вероятность попадания случайной величины X в интервал (1/3; 2/3); 2) функцию плотности распределения вероятностей f (x); 3) математическое ожидание случайной величины X; 4) построить графики F (x) и f (x).

1) Вероятность попадания случайной величины в интервал (a, b) равна

P (a < X < b) = F (b) - F (a)

P (1/3 < X < 2/3) = F (2/3) - F (1/3) = (2/3)3 - (1/3)3 = 8/27 - 1/27 = 7/27

2) Функция плотности

f (x) = F`(x) =
3) Математическое ожидание
M (X) = = = = = ? (14 - 04) = ?
4) Графики:

Задание 5

Текущая цена акции может быть смоделирована с помощью нормального закона распределения с математическим ожиданием a = 26 и средним квадратическим отклонением у = 0,7. Требуется: а) записать функцию плотности вероятности случайной величины X - цены акции и построить ее график; б) найти вероятность того, что случайная величина X примет значение, принадлежащее интервалу (25,2; 26,8); в) найти вероятность того, что абсолютная величина |X - 26| окажется меньше е = 0,5.

А) Функция плотности нормального распределения имеет вид

f (x) = = =

Б) Вероятность того, что нормальная величина примет значение из интервала (б; в), равна
P (б < X < в) = - = - = Ф (1,14) - Ф (-1,14) = 0,3735 + 0,3735 = 0,747
Значения функции Лапласа Ф (x) = берем из таблиц.
В) Вероятность того, что отклонение нормальной величины от математического ожидания не превышает е, равна
P (|X - a| < е) =
P (|X - 26| < 0,5) = = 2Ф (0,714) = 2 * 0,2611 = 0,5222

СТАТИСТИКА

Задание 1

В задаче приведена выборка, извлеченная из соответствующей генеральной совокупности. Требуется: 1) по несгруппированным данным найти выборочную среднюю; 2) найти доверительный интервал для оценки неизвестного математического ожидания признака
X генеральной совокупности (генеральной средней), если признак X распределен по нормальному закону; известны г = 0,98 - надежность и у = 200 - среднее квадратическое отклонение; 3) составить интервальное распределение выборки с шагом h = 200, взяв за начало первого интервала x1 = 700; 4) построить гистограмму частот; 5) дать экономическую интерпретацию полученных результатов.
Проведено выборочное обследования объема промышленного производства за 16 месяцев и получены следующие результаты (тыс. руб.):
750; 950; 1000; 1050; 1050; 1150; 1150; 1150; 1200; 1200; 1250; 1250; 1350; 1400; 1400; 1550
1) Выборочная средняя
= = (750 + 950 + 1000 + 1050 + 1050 + 1150 + 1150 + 1150 + 1200 + 1200 + 1250 + 1250 + 1350 + 1400 + 1400 + 1550) / 16 = 18850 / 16 = 1178,1 тыс. руб.
2) Доверительный интервал
- < a < + ,
где Ф (t) = г / 2 = 0,98 / 2 = 0,49. По таблице функции Лапласа находим: t = 2,32.
1178,1 - < a < 1178,1 +
1178,1 - 116,3 < a < 1178,1 + 116,3
1061,8 < a < 1294,4 тыс. руб.
3) Подсчитаем границы интервалов:
x2 = x1 + h = 700 + 200 = 900 и т.д.
Подсчитаем частоты интервалов (т.е. количество значений объема производства, попавших в данный интервал). Интервальное распределение выборки:
Интервал
Частоты
(700; 900)
1
(900; 1100)
4
(1100; 1300)
7
(1300; 1500)
3
(1500; 1700)
1

4) Гистограмма частот:

5) Экономическая интерпретация. Средний объем промышленного производства за 16 месяцев составил 1178,1 тыс. руб. С надежностью 0,98 можно утверждать, что средний объем производства находится в пределах от 1061,8 до 1294,4 тыс. руб. Наибольшее число месяцев (7) объем производства находился в интервале от 1100 до 1300 тыс. руб.

Задание 2

По корреляционной таблице требуется: 1) в прямоугольной системе координат построить эмпирические ломаные регрессии Y на X и X на Y, сделать предположение о виде корреляционной связи; 2) оценить тесноту линейной корреляционной связи; 3) составить линейные уравнения регрессии Y на X и X на Y, построить их графики в одной системе координат; 4) используя полученное уравнение, оценить ожидаемое среднее значение признака Y при заданном x = 98. Дать экономическую интерпретацию полученных результатов.
В таблице дано распределение 200 заводов по основным фондам X в млн. руб. и по готовой продукции Y в млн. руб.:
y\x
20
30
40
50
60
70
80
90
100
ny
12
4
4
18
6
10
2
18
24
8
13
1
1
23
30
4
7
9
3
4
2
29
36
1
2
3
12
4
8
30
42
1
3
18
24
1
47
48
7
12
3
22
54
9
18
27
nx
10
23
24
14
19
26
41
22
21

Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.