На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Диплом Классы групп с заданными решетками подгрупповых функторов. Бинарная алгебраическая операция. Группа с коммутативной операцией. Основная теорема о гомоморфизме. Определения и основные примеры подгрупповых функторов. Решетки подгрупповых функторов.

Информация:

Тип работы: Диплом. Предмет: Математика. Добавлен: 02.02.2010. Сдан: 2010. Уникальность по antiplagiat.ru: --.

Описание (план):


3
Министерство образования Республики Беларусь
Учреждение образования
"Гомельский государственный университет
им. Ф. Скорины"
Математический факультет
Курсовая работа
Элементарное изложение отдельных фрагментов теории подгрупповых функторов

Исполнитель:
Студентка группы М-42
Ларченко А.Ю.
Научный руководитель:
Канд. физ-мат. наук, доцент
Зверева Т.Е.
Гомель 2006
Содержание
    Введение
      Перечень условных обозначений
      1. Общие определения и обозначения
      2. Используемые результаты
      3. Определения и основные примеры подгрупповых функторов
      4. Решетки подгрупповых функторов
      5. Классы групп с заданными решетками подгрупповых функторов
      Заключение
      Список использованных источников

Введение

Согласно теореме о соответствии между подгруппами основной группы, содержащие нормальную подгруппу и подгруппами из факторуппы существует взаимнооднозначное соответствие, при котором нормальным подгруппам соответствуют нормальные подгруппы, субнормальным подгруппам соответствуют субнормальные и т.д.

Этот факт лежит в основе следующего определения, введеного в монографии А.Н. Скибы "Алгебра формаций." (Мн.: Беларуская навука, 1997).

Пусть некоторый класс групп. Составим с каждой группой некоторую систему ее подгрупп . Будем говорить, что - подгрупповой -функтор или подгрупповой функтор на , если выполняются следующие условия:

1) для всех ;

2) для любого эпиморфизма , где А, и для любых групп и имеет место и

Значение этого понятия связано прежде всего с тем, что подгрупповой функтор выделяет в группе те системы подгрупп, которые инвариантны относительно гомоморфизма и поэтому удобны при проведении индуктивных рассуждений.

Целью данной дипломной работы является элементарное изложение отдельных фрагментов теории подгрупповых функтороф, доступное для понимания в рамках специальных курсов математических факультетов.

Дипломная работа состоит из введения, общей части, включающей 5 параграфов, заключения и списка используемой литературы.

В первом параграфе приводятся общие определения и обозначения.

Во втором параграфе даются те известные результаты теории групп, которые используются в основном тексте дипломной работы.

Третий параграф посвящен изучению основных понятий подгрупповых функторов и рассмотрению примеров. Здесь из различных источников собраны и систематизированы основные определения и примеры подгрупповых функторов.

В параграфе четыре систематизирован теоретический материал по теме "Решетки подгрупповых функторов".

Параграф пять изучает свойства конечных групп в зависимости от свойств соответствующих решеток подгрупповых функторов.

Перечень условных обозначений

- принадлежность элемента множеству;

- знак включения множеств;

- знак строгого включения;

и - соответственно знаки пересечения и объединения множеств;

- пустое множество;

- множество всех простых чисел;

- некоторое множество простых чисел, т.е. ;

Пусть - группа. Тогда:

- порядок группы ;

- порядок элемента группы ;

- коммутант группы , т.е. подгруппа, порожденная коммутаторами всех элементов группы ;

- является подгруппой группы ;

- является собственной подгруппой группы ;

- является максимальной подгруппой группы ;

- является нормальной подгруппой группы ;

- является субнормальной подгруппой группы ;

- является минимальной нормальной подгруппой группы ;

- факторгруппа группы по подгруппе ;

- индекс подгруппы в группе ;

- нормализатор подгруппы в группе ;

Если и - подгруппы группы , то:

- и изоморфны.

Пусть - группа, и , тогда:

- правый смежный класс,

- левый смежный класс;

- совокупность всех нормальных подгрупп группы ;

- группа порядка ;

Скобки применяются для обозначения подгрупп, порождённых некоторым множеством элементов или подгрупп.

- подгруппа, порожденная элементами и .

- подгрупповой - функтор или подгрупповой функтор на , где - некоторый класс групп;

- совокупность всех - подгрупп группы ;

- тривиальный подгрупповой - функтор;

- единичный подгрупповой - функтор;

- ограничение подгруппового - функтора на класс групп ;

- пересечение системы подгрупповых - функторов ;

- решётка всех подгрупповых - функторов;

- решётка всех замкнутых подгрупповых - функторов;

Прописными готическими буквами обозначаются классы групп, т.е. всякое множество групп, содержащее вместе с каждой своей группой и все группы, ей изоморфные, в частности, формации, т.е. классы групп, замкнутые относительно факторгрупп и подпрямых произведений.

Стандартные обозначения, закрепленные за некоторыми классами групп:

- класс всех групп;

- класс всех абелевых групп;

1. Общие определения и обозначения

Бинарной алгебраической операцией на множестве называют отображение декартова квадрата во множество . Если - бинарная операция на , то каждой упорядоченной паре элементов из соответствует однозначно определенный элемент . Бинарную операцию на обозначают одним из символов: и т.д. Если, например, вместо условимся писать , то вместо пишем .

Говорят, что на множестве X определена бинарная операция (умножение), если для всех .

Если для всех , то операция называется ассоциативной.

Если для всех , то операция называется коммутативной.

Элемент называется единичным, если для всех .

Обратным к элементу называется такой элемент , что .

Полугруппой называется непустое множество с бинарной алгебраической операцией (умножение), удовлетворяющей следующим требованиям:

(1) операция определена на , т.е. для всех и ;

(2) операция ассоциативна, т.е. для любых .

Группой называется непустое множество с бинарной алгебраической операцией (умножением), удовлетворяющей следующим требованиям:

(1) операция определена на , т.е. для всех и ;

(2) операция ассоциативна, т.е. для любых ;

(3) в существует единичный элемент, т.е. такой элемент , что для всех ;

(4) каждый элемент обладает обратным, т.е. для любого существует такой элемент , что .

Группу с коммутативной операцией называют коммутативной или абелевой.

Если - конечное множество, являющееся группой, то G называют конечной группой, а число элементов в - порядком группы .

Также группой называется непустое множество с бинарной алгебраической операцией (умножением), удовлетворяющей следующим требованиям:

(1) операция определена на ;

(2) операция ассоциативна;

(3) уравнения , имеют решения для любых элементов .

Подмножество группы называется подгруппой, если - группа относительно той же операции, которая определена на группе . Для подгруппы используется следующее обозначение: . Запись читается так: - подгруппа группы .

Также можно дать следующее определение подгруппы конечной группы. Непустое подмножество конечной группы называется подгруппой, если для всех и

Собственной называется подгруппа, отличная от группы.

Пусть - группа, и . Правым смежным классом группы по подгруппе называется множество всех элементов группы вида , где пробегает все элементы подгруппы .

Аналогично определяется левый смежный класс

Если - конечная группа, то число различных правых смежных классов по подгруппе также будет конечно, оно называется индексом подгруппы в группе и обозначается через .

Подгруппа называется нормальной подгруппой группы , если для всех . Запись читается так: - нормальная подгруппа группы Равенство означает, что для любого элемента существует элемент такой, что .

Пусть - нормальная подгруппа группы . Обозначим через совокупность всех левых смежных классов группы по подгруппе , т.е. . Группа называется факторгруппой группы по подгруппе и обозначается через .

Условимся через S обозначать совокупность всех подгрупп группы , содержащих подгруппу . В частности, S= S - совокупность всех подгрупп группы , а S.

Каждая нормальная подгруппа группы определяет цепочку . Обобщая эту ситуацию, цепочку

вложенных друг в друга нормальных подгрупп группы называют нормальным рядом в .

Ряд называется субнормальным, если выполняется более слабое условие: каждый предыдущий его член есть нормальная подгруппа следующего члена, т.е. для

Члены субнормальных рядов называются субнормальными подгруппами (если подгруппа субнормальна в , то пишут ().

Ясно, что каждый нормальный ряд является субнормальным.

Собственная подгруппа неединичной группы называется максимальной подгруппой, если не содержится ни в какой другой подгруппе, отличной от всей группы , т.е. если из условия следует, что или . Для максимальной подгруппы неединичной группы используется запись

В абелевой группе любые два элемента перестановочны. Если группа неабелева, то в ней существуют неперестановочные элементы, т.е. такие элементы и , что . Поэтому естественно рассмотреть элемент , для которого . Отсюда .

Коммутатором элементов и называют элемент , который обозначают через . Ясно, что .

Подгруппа, порождённая коммутаторами всех элементов группы , называется коммутантом группы и обозначается через . Таким образом, .

Для любой неединичной подгруппы можно построить цепочку коммутантов

Если существует номер такой, что , то группа называется разрешимой.

Если - непустое подмножество группы и , то

Элемент называется перестановочным с подмножеством , если . Равенство означает, что для любого элемента существует такой элемент , что . Если элемент перестановочен с подмножеством , то

Совокупность всех элементов группы , перестановочных с подмножеством называется нормализатором подмножества в группе и обозначается через . Итак,

Пусть и - мультипликативные группы. Отображение называется гомоморфизмом группы в группу , если для любых и .

Если - подмножество группы , то образ при гомоморфизме , а - образ гомоморфизма . Образ гомоморфизма также обозначают через .

Ядром гомоморфизма называется множество где - единичный элемент группы . Другими словами, в ядре собраны все элементы группы , переходящие при отображении в единичный элемент группы .

Гомоморфизм называется мономорфизмом, если . Из леммы 1 следует, что гомоморфизм является мономорфизмом тогда и только тогда, когда отображение - инъекция.

Если , то гомоморфизм называется эпиморфизмом. Ясно, что в этом случае - сюръекция.

Гомоморфизм, который одновременно является мономорфизмом и эпиморфизмом, будет изоморфизмом.

2. Используемые результаты

Теорема 1.1 (Теорема о соответствии) Пусть - нормальная подгруппа группы . Тогда:

(1) если - подгруппа группы и , то - подгруппа факторгруппы ;

(2) каждая подгруппа факторгруппы имеет вид , где - подгруппа группы и ;

(3) отображение является биекцией множества S на множество S;

(4) если S, то - нормальная подгруппа группы тогда и только тогда, когда - нормальная подгруппа факторгруппы .

Лемма 1.2 Пусть - гомоморфизм группы в группу . Тогда:

(1) единичный элемент группы переходит в единичный элемент группы , т.е. ;

(2) обратный элемент переходит в обратный, т.е. для всех ;

(3) образ гомоморфизма является подгруппой группы , т.е. ;

(4) ядро гомоморфизма является нормальной подгруппой группы , т.е. ;

(5) тогда и только тогда где когда .

Лемма 1.3 Пусть - гомоморфизм группы в группу . Тогда:

(1) если , то ;

(2) если , то ;

(3) если подмножества и сопряжены в , то и сопряжены в .

Теорема 1.4 (Основная теорема о гомоморфизме) При гомоморфизме групп факторгруппа по ядру изоморфна образу, т.е. если - гомоморфизм, то .

Теорема 1.5 (первая о изоморфизме) Пусть - нормальная подгруппа группы . Тогда для любой подгруппы пересечение является нормальной подгруппой в подгруппе , а отображение

является изоморфизмом групп и .

Теорема 1.6 (вторая о изоморфизме) Если и - нормальные подгруппы группы , причем , то изоморфна .

Лемма 3.1 Пусть - формация, . Тогда

Лемма 20.6. Пусть - подгрупповой функтор и - группа. Если и , тогда .

Лемма 20.7. Пусть , - элементарно абелевы -группы с . Тогда имеет подгруппу такую, что .

Теорема. Пусть - такой набор конгруэнций -алгебры A, что . Пусть прямое произведение факторалгебр и

Тогда - мономорфизм алгебры в алгебру и входит подпрямо в .

Теорема 20.8. Пусть - конечное многообразие локально конечных групп, причем каждая группа из либо счетна, либо конечна. Тогда в том и только в том случае решетка является цепью, когда существует такое простое число , что каждая группа в является элементарно абелевой -группой.

Теорема 20.9. Пусть - конечная группа и - конечное многообразие, порожденное . Тогда в том и только в том случае является элементарной абелевой -группой, когда решетка является цепью.

Лемма 24.9 Пусть - наследственный гомоморф конечных групп. Пусть - замкнутый подгрупповой функтор на Пусть - нильпотентная группа в и Предположим, что , где - простое число. Пусть - нильпотентная группа в такая, что и Тогда

Лемма 24.10 Пусть - наследственный гомоморф конечных нильпотентных групп и Пусть Если - идемпотент в , удовлетворяющий условию и , где тогда

Теорема 24.11 Пусть - конечное многообразие групп. И пусть каждая группа в конечная. Тогда ширина решетки всех идемпотентов в конечна и в том и только в том случае, когда состоит из нильпотентных групп и

3. Определения и основные примеры подгрупповых функторов

Пусть некоторый класс групп. Составим с каждой группой некоторую систему ее подгрупп . Будем говорить, что - подгрупповой -функтор или подгрупповой функтор на , если выполняются следующие условия: 1) для всех ;

2) для любого эпиморфизма , где А, и для любых групп и имеет место и

Подгрупповой -функтор называется:

1) замкнутым, если для любых двух групп и имеет место ;

2) тривиальным, если для любой группы имеет место

;

3) единичным, если для любой группы система состоит из всех подгрупп группы G.

Тривиальный подгрупповой -функтор обозначается символом , а единичный - символом .

Если и - подгрупповой -функтор, то - такой подгрупповой -функтор, что для всех . Такой функтор называется ограничением функтора на классе .

Рассмотрим несколько примеров подгрупповых функторов. В случае, когда - класс всех групп, подгрупповые -функторы мы будем называть просто подгрупповыми функторами.

Пример 1. Пусть для любой группы ,

Понятно, что - замкнутый подгрупповой функтор. Для обозначения такого подгруппового функтора мы применяем запись .

Пример 2. Пусть - совокупность всех нормальных подгрупп группы для каждой группы . Такой функтор в общем случае замкнутым не является.

Пример 3. Пусть - произвольное натуральное число. Для каждой группы через обозначим совокупность всех таких подгрупп , для которых . Понятно, что - подгрупповой -функтор. Для обозначения такого функтора мы будем применять запись .

Пример 4. Пусть - произвольное кардинальное число. И пусть для любой группы .

Понятно, что такой подгрупповой функтор в общем случае не является замкнутым. Для обозначения такого функтора мы применяем запись .

Если - подгруппа группы , то символом обозначается мощность множества .

Пример 5. Пусть - простое число и пусть для любой группы система в нет и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.