На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


реферат Естественная олигополия

Информация:

Тип работы: реферат. Добавлен: 14.10.2012. Сдан: 2012. Страниц: 11. Уникальность по antiplagiat.ru: < 30%

Описание (план):


СОДЕРЖАНИЕ 

Введение...........................................................................................................3
Глава 1. Модель дуополии Курно..................................................................5
            1.1 Обобщение модели Курно ..........................................................11
Глава 2. Модель Штакельберга.....................................................................12
Глава 3. Сговор и картели..............................................................................15
            3.1 Кривые реагирования...................................................................18
            3.2 Ценообразование в условиях олигополии предложения .........21
            3.3 Стратегия поведения при олигополии и теория игр.................22
            3.4 Олигопольный рынок гторогенного блага.................................24
Заключение .....................................................................................................28
Список  используемой литературы ...............................................................29          
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ВВЕДЕНИЕ 

      Олигополия - это рыночная структура, при которой в реализации какого-либо товара доминирует очень немного продавцов, а появление новых продавцов затруднено или невозможно. Товар, реализуемый олигополистическими фирмами, может быть и  дифференцированным и стандартизированным.
      Обычно  на олигополистических рынках господствует от двух до десяти фирм, на которые приходится  половина и более общих продаж продукта.
      На  олигополистических ранках, по меньшей  мере, некоторые фирмы могут влиять на цену благодаря их большим долям  в общем выпускаемом количестве товара. Продавцы на олигополистическом рынке знают, что когда они  либо их соперники изменят цены или выпускаемый объем продаж, то последствия скажутся на прибылях всех фирм на рынке. Продавцы осознают свою взаимозависимость. Предполагается, что каждая фирма в отрасли признает, что изменение ее цены или выпуска вызовет реакцию со стороны других фирм. Реакция, которую какой-либо продавец ожидает от соперничающих фирм в ответ на изменения установленных им цены, объема выпуска или изменения деятельности в области маркетинга, является основным фактором, определяющим его решения. Реакция, которую отдельные продавцы ждут от своих соперников, влияет на равновесие на олигополистических рынках.
      Во  многих случаях олигополии защищены барьерами для входа на рынок, схожими с теми, которые  существуют для монопольных фирм. Естественная олигополия существует, когда несколько фирм могут поставлять продукцию для всего рынка при более низких долгосрочных издержках, чем были бы у множества фирм.
      Можно выделить следующие черты олигополистических рынков:
      1.Всего  несколько фирм снабжают весь  рынок. Продукт может быть как  дифференцированным, так и стандартизированным.
      2.По  крайней мере, некоторые фирмы  в олигополистической отрасли  обладают крупными рыночными долями. Следовательно, некоторые фирмы на рынке способны влиять на цену товара, варьируя его наличие на рынке.
      3.Фирмы в отрасли сознают свою взаимозависимость.
Нет единой модели олигополии, хотя разработан целый  ряд моделей. Чтобы попытаться объяснить определенные типы делового поведения, разработаны  модели олигополии. Первая пытается объяснить неизменность цен; вторая -почему  фирмы часто следуют за ценовой политикой фирмы, которая выступает как лидер в объявлении изменения цены; третья показывает, каким образом фирмы могут устанавливать цены так, чтобы не максимизировать текущие прибыли, но зато максимизировать прибыль в долгосрочном плане, путем предотвращения появления на рынке новых продавцов. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ГЛАВА 1. МОДЕЛЬ ДУОПОЛИИ КУРНО
      Дуополия - это рыночная структура, при которой  два продавца, защищенные от появления дополнительных продавцов, являются единственными производителями стандартизированной продукции, не имеющей близких заменителей. Экономические модели дуополии полезны, чтобы проиллюстрировать, как предположения отдельного продавца насчет ответа соперника воздействуют на равновесный выпуск Классическая модель дуополии - это модель, сформулированная в 1838 г. французским экономистом Огюстеном Курно. Эта модель допускает, что каждый из двух продавцов предполагает что его конкурент всегда будет удерживать свой выпуск неизменным на текущем уровне. Она также предполагает, что продавцы не узнают о своих ошибках. В действительности предположения продавцов о реакции конкурента, вероятно, поменяются, когда они узнают о своих предыдущих ошибках.
      Допустим, что в регионе  есть только два  производителя товара Х. Любому  желающему приобрести товар Х приходится приобретать его у одного из этих двух производителей. Товар Х каждой фирмы стандартизирован и не имеет качественных различий. Никакой другой производитель не может войти на рынок. Допустим, что оба производителя могут выпускать товар Х  при одинаковых затратах и что средние издержки неизменны и равны, следовательно, предельным издержкам. График А рис. 1, показывает рыночный спрос на товар Х, помеченный Dm, вместе со средними и предельными издержками производства. Если бы  товар Х производился на конкурентном рынке, то выпуск был бы Qc ед., а цена была бы Pc=AC=MC.
      Двумя фирмами, выпускающими товар Х являются фирма А и фирма В. Фирма  А начала производить  товар Х  первая. До того, как фирма В начинает производство, фирма А обладает всем рынком и предполагает, что выпуск соперничающих фирм всегда будет равен нулю. Поскольку она считает, что обладает монополией, то производит монопольный выпуск, соответствующий точке, в которой MRm=MC. Получающаяся в итоге цена равна Pm. Предположим линейную кривую спроса. Это подразумевает, что предельный доход будет падать с ростом выпуска вдвое быстрее цены. Поскольку кривая спроса делит отрезок РсЕ пополам, то монопольный выпуск составляет половину  конкурентного выпуска. Следовательно, первоначальный выпуск фирмы А, максимизирующий его прибыль составляет  Qm  ед.
      Сразу  же после того, как фирма А начинает производство, на рынке появляется фирма В. Появление новых фирм невозможно. Фирма В предполагает, что фирма А не будет отвечать изменением  выпуска. Она, следовательно, начинает производство, предполагая, что фирма А будет продолжать выпускать Qm ед. товара Х. Кривая спроса, который фирма В видит для своего товара, показана на гр. В рис. 1. Она может обслужить всех тех покупателей, которые купили бы товар Х, если бы цена упала ниже текущей цены фирмы А, Pm. Следовательно, кривая спроса на ее выпуск начинается при цене Pm, когда рыночный спрос составляет Qm ед. товара. Эта кривая спроса Db1, продажи вдоль этой кривой представляют собой прибавку, обеспечиваемую фирме В к текущему рыночному выпуску Qm ед., которые до этого момента выпускала фирма А.
      Кривая  предельного дохода, соответствующая  кривой спроса Db1 - MRb1. Фирма В производит объем продукции, соответствующий  равенству MRb1=MC. Судя по отсчету на оси выпуска от точки, в которой выпуск товара Х равен Qm ед., видим, что этот объем составляет  0.5.Х ед. товара. Увеличение рыночного предложения товара Х с Х до 1.5 Х ед., однако, уменьшает цену единицы товара Х с Pm до Р1. В таблице 1  представлены данные выпуска продукции каждой фирмы за первый месяц деятельности. Максимизирующий прибыль выпуск каждой фирмы всегда составляет половину разницы между Qc и тем объемом производства, который, как она предполагает, будет иметь другая фирма. Конкурентный выпуск - это выпуск, соответствующий цене Р =МС - в этом случае 2Х ед. товара. Как показывает таблица фирма А начинает с производства 0.5 Qc, при условии, что выпуск ее соперника равен нулю. Тогда фирма В в этом месяце выпускает 0.5 Х товара Х, что составляет 0.5(0.5Qc)=0.25 Qc. Это половина разности между конкурентным выпуском и монопольным выпуском, который первоначально обеспечивала фирма А.
      Падение цены товара Х, вызванное дополнительным производством фирмы В, приводит к изменению кривой спроса фирмы А. Фирма А теперь предполагает, что фирма В будет продолжать выпускать 0.5.Х ед. товара. Она видит спрос на свой товар Х как начинающийся в точке кривой рыночного спроса, соответствующей месячному выпуску 0.5. Х ед. Ее спрос теперь равен Da1, как показано на гр. С, рисунок 1. Максимизирующий для нее прибыль выпуск  равен теперь половине разности между конкурентным выпуском и тем объемом, который в настоящее время производит фирма В. Это происходит, когда MRa1=MC. Фирма А предполагает, что фирма В будет продолжать выпускать 0.5.Х ед. товара после того, как он отрегулирует свой выпуск, следовательно, максимизирующий прибыль выпуск равен у фирмы А
      1/2(2X - 1/2X)=3/4 X .
Это можно  записать в виде:
      1/2(Qc - 1/4Qc)=3/8 Qc, что и показано в таблице 1.
Модель  дуополии Курно (рис. 1)
        Первый месяц. 

Гр. А
        Цена
 

 

           Pm

           Pc                                      E                                               MC=AC   
 
 
 
 
 
 

                                                                            Mrm                         Dm 


                             Qm=1/2Qc    Qc                                                  Q 
 
 

Гр. В
                     Цена
 
 

                   
                Pm 

                 P1       
                                                                                                                    MC=AC 
 
 
 
 
 
 

                                                                                            MRb1                             Db1 

                              
             1/2Qc  3/4 Qc       Qc                                                   Q 

Второй  месяц.
Гр. С
       Цена 
 



        Р2
                                                                                                           МС=АС 
 
 
 
 
 
 

                                                                        MRa1                                  Da1 
 


                1/4 Qc 5/8 Qc     Qc
Гр. D
 

 

         P3    
                                                                                MC=AC
 
 
 
 
 

                                                                          MRb2                    Db2

                 3/8Qc11/16QcQc 

Окончательное (гр. Е)
 

 

      Pe
                                                                                 MC=AC 
 
 
 

                                                                                                 D 


                   1/3Qc  2/3Qc   Qc 

Дуопольное  равновесие Курно  табл.1

             Месяц    Вып. фирмы А                    Вып. фирмы В

          1            1/2Qc                                   1/2(1/2Qc)=1/4Qc
             2   1/2(Qc-1/4Qc)=3/8Qc                1/2(Qc-3/8Qc)=5/16Qc
             3    1/2(Qc-5/10Qc)=11/32Qc         1/2(Qc-11/32Qc)=21/64Qc
             4    1/2(Qc-21/64Qc)=43/128Qc     1/2(Qc-43/128Qc)=85/256Qc 

                 Конечное  равновесие 

             Qa=(1-(1/2Qc+1/8Qc+1/32Qc+...))Qc=(1-1/2(1-1/4))Qc=1/3Qc
             Qb=(1/4+1/16+1/64+...)Qc=(1/4(1-1/4))Qc=1/3Qc 

             Общий выпуск =2/3Qc

      Теперь  очередь фирмы В отвечать снова. Фирма А снизит свое производство С 1/2 Qc до 3/8Qc - это приводит к снижению общего предложения товара Х  с 3/4Qc  до  5/8Qc. В результате этого цена товара вырастает до Р2. Фирма В предполагает, что фирма А будет продолжать выпускать это количество. Она рассматривает свою кривую спроса как линию, начинающуюся в точке, где рыночный выпуск равен 3/8Qc.Эта кривая спросаDb2, указанная на гр.D, рис.1. Максимальная прибыль существует в той точке, где MRb2=MC. Это равняется половине разности между конкурентным выпуском и величиной в 3/8 конкурентного выпуска, которую в настоящее время поставляет фирма А. Как  показано в таблице 1, фирма В теперь производит 5/16 конкурентного выпуска. Общий рыночный выпуск равен теперь  11/16Qc, а цена снижается до Р3. За каждый месяц каждый дуополист производит половину разности  между конкурентным выпуском и выпуском, осуществляемым конкурентной фирмой.
      Как показано на гр. Е, рис.1, каждая фирма выпускает 1/3 Qc, а цена равна Ре. Это равновесие Курно для дуополии. Оно существовало бы. если только каждая фирма упорно полагала бы, что другая не будет регулировать свой выпуск, что подразумевает, что управление фирмы не учитывает своих ошибок, что, конечно, является большим упрощением. Но при более сложных допущениях становится сложно определить условия равновесия.
Пример 1. Отраслевой спрос на продукцию  характеризуется функцией Р = 100 - 0.5Q; в отрасли работают две максимизирующие прибыль фирмы А и В со следующими функциями затрат: ТСа = 20 + 0.75qa^2 и ТСь = 30 + 0.5qb^2.
Выведем уравнение реакции для фирмы  А. Так как MRa = 100 - qa - 0.5qь и MCa = 1.5qa, то pa = max при 100 - qa - 0.5qb = 1.5 qa ?  qa = 40 - 0.2qb.
Аналогичные расчеты для фирмы В дают ее уравнение реакции: qb = 50 - 0.25qa.
Равновесные значения цены и объемов предложения  определяются из следующей системы уравнений:
P = 100 - 0.5 (qa + qb),
qa = 40 - 0.2 qb,   ? qA* = 31.6, qb* = 42.1,  P* = 63.2. 
qb = 50 - 0.25qa.
     В состоянии равновесия прибыли фирм соответственно равны: pa  = 63.2 • 31.6 - 20 - 0.75 * 31.6^2 == 1228.2, pь = 63.2*42.1 - 30 - 0.5*42.1^2 = 1744.5.
Чтобы проследить за процессом установления равновесной цены в модели дуополии Курно, допустим, что сначала в отрасли работала только фирма А. Она установила монопольную цену Рм = 80 и выпускает qm = 40. Для фирмы В, решившей в такой ситуации войти в отрасль, функция спроса имеет вид Р = 100 - 0.5(40 + qb), а ее предельный доход определяется по формуле MRb = 80- qb. Прибыль фирмы В будет максимальной, если 80 - qь = qb, т. е. при выпуске 40 ед. продукции. Такой же результат получается из уравнения реакции фирмы В. Вследствие этого рыночная цена снизится до 60 ден. ед. При такой цене объем предложения фирмы А уже не обеспечивает ей максимальную прибыль, и она изменит объем выпуска в соответствии со своим уравнением реакции исходя из того, что фирма В выпускает 40 ед. продукции: q’a = 40 - 0.2*40 = 32. В результате цена возрастет до 64. Ответный ход фирмы В выразится в том, что она в соответствии со своим уравнением реакции предложит на рынок q’b = 50 - 0.25 • 32 = 42, сбивая тем самым цену до 63. После того как фирма А в очередной раз скорректирует свой выпуск,
  qa’' = 40 - 0.2 * 42 = 31.6, в отрасли установится равновесная цена 63.2. 

1.1 ОБОБЩЕНИЕ МОДЕЛИ КУРНО
     Используя предпосылки модели дуополии Курно, можно построить модель ценообразования при любом числе конкурентов. Примем в целях упрощения, что у всех конкурентов одинаковые экономические затраты на единицу продукции: ACi = 1 = const; i = 1, .., n. Тогда прибыль i-той фирмы равна pi, = Pqi, - lqi; так как Р = g - h a qi , то прибыль i-той фирмы можно представить в виде
pi = [g - h(q1 + q2 + ... + qn)] qi - lqi = gqi - hqiq1 - hqiq2 - ... - hqi^2 - ... - hqiqn - lqi.
Она достигает  максимума при 
dpi / dqi = g - hq1 - hq2 - ... - 2hqi - ... - hqn - l = g - hq1 - hq2 - ... - hqi - ... - hqn - hqi - l = 0
Поскольку g -hq1 -hq2 -...- hqn = P, то условие максимизации прибыли для отдельной фирмы имеет вид
Р - hqi = 1.                      (1.1)
Из равенства (1.1) следует qi* = (P-l)/h, т. е. в состоянии равновесия все фирмы будут иметь одинаковый объем реализации: a qi = nqi = Q,  или
qi = Q / n = (g - P) / nh (1.2)
     Это вытекает из допущения, что у всех фирм одинаковые предельные затраты производства.
     Подставив значение (1.2) в уравнение (1.1), получим значение равновесной цены как функции от числа одинаковых по размеру фирм:
P* = l + hqi = l + h ((g - P*) / nh) ? P* = (nl + g) / (n + 1)
При n = 1 получаем монопольную цену, a по мере увеличения п цена приближается к предельным издержкам. 

ГЛАВА 2. МОДЕЛЬ ШТАКЕЛЬБЕРГА
     Равновесие  в модели Курно достигается за счет того, что каждый из конкурентов меняет свой объем выпуска в ответ на изменение выпуска другого до тех пор, пока такие изменения увеличивают их прибыль. В модели Штакельберга предполагается, что один из дуополистов выступает в роли лидера, а другой — в роли аутсайдера. Лидер всегда первым принимает решение об объеме своего выпуска, а аутсайдер воспринимает выпуск лидера в качестве экзогенного параметра. В этом случае равновесные объемы выпуска определяются не в результате решения системы уравнений реакции дуополистов, а на основе максимизации прибыли лидера, в формуле которой вместо выпуска аутсайдера  находится уравнение его реакции. Определим равновесие Штакельберга в условиях примера 1.
     Если  лидером является фирма А, то ее выпуск определяется из равенства MRa = МСа. Общая выручка фирмы А с учетом уравнения реакции фирмы В равна: TRa = = Pqa = [100 - 0.5(qa + 50 - 0.25qa)]qa = 75qa - 0.375 qa^2; тогда MRa = 75 - 0.75qa. Следовательно, прибыль фирмы А будет максимальной при 75 - 0.75qa = 1.5qa. Отсюда qa = 33.33; qь = 50 - 0.25 * 33.33 = 41.66; P = 100 - 0.5(33.33 + 41.66) = 62.5; pa = 62.5 * 33.3 - 20 - 0.75*33.3^2 = 1230; pb = 62.5*41.7 - 30 - 0.5 * 41.7^2 = 1707.
     
Рис. 2Линия реакции и
               изопрофиты
     Таким образом, в результате пассивного поведения  фирмы В ее прибыль снизилась, а фирмы А возросла. Если бы фирмы  поменялись ролями, то прибыль фирмы А равнялась бы 1189, а фирмы В — 1747.8.
Для наглядного сопоставления равновесия Курно с равновесием Штакельберга линии реакции дуополистов нужно дополнить линиями равной прибыли (изопрофитами). Уравнение изопрофиты образуется в результате решения уравнения прибыли дуополии относительно ее выпуска при заданной величине прибыли. По данным примера 1 на рис. 2 построены изопрофиты и линия реакции фирмы А. Чем ниже расположена изопрофита, тем большему размеру прибыли она соответствует, так как ее приближение к оси абсцисс соответствует росту qa и уменьшению qb.
     Наложив на рис. 2 аналогичный рисунок для фирмы В, получим рис. 3 на котором равновесие Курно отмечено точкой С, а равновесие Штакельберга точкой Sa при лидерстве фирмы А и точкой Sb при лидерстве фирмы В.
     Картель. Однако наибольшие прибыли олигополисты получат в случае организации картеля — явного или скрытого сговора о распределении объема выпуска с целью поддержания монопольной цены на данном рынке. В условиях рассматриваемого числового примера суммарная прибыль участников картеля определяется по формуле
pa = [100 - 0.5(qA + qB)] (qA+qB) - 20 - 0.75qA^2 - 30 - 0.5qB^2 = 100qA + 100qB -  qAqB -  - 1.25qA^2 - qB^2 - 50.

     Рис. 3. Равновесие Курно и
    равновесие Штакельберга.
Условием  ее максимизации является система уравнений:
  100 - qB - 2.5qA = 0,
  100 - qA - 2qB = 0,
из которой  следует, что фирма А должна производить 25, а фирма В — 37.5 ед. продукции. В этом случае рыночная цена будет равна Р = 100 - 0.5(25 + 37.5) = 68.75, а прибыли фирм А и В соответственно равны pA = 68.75 * 25 - 20 - 0.75*25^2 = 1230, pB = 68.75 * 37.5 - 30 - 0.5 * 37.5^2 = 1845.
     В таблице 2 показано, как меняется величина прибыли дуополистов в зависимости от рассмотренных вариантов их поведения на рынке.
                                                            Таблица 2
      Варианты  поведения на рынке
      двусторонняя           конкуренция по Курно Фирма В пассивно приспосабливается  к выпуску фирмы А фирма А пассивно   приспосабливается к выпуску фирмы В образование        картеля (сговор)
    pA 1228.2 1230 1189 1230
    pВ 1744.5 1706 1747.8 1845
 

Рис.4. Выпуск дуополий при равновесии по Курно и образовании картеля
В графическом  виде результат решения рассматриваемого примера представлен на рис.4. Точка С на пересечении линий реакции фирм А и В определяет их выпуск в состоянии равновесия по Курно, а точка К — при образовании картеля. При пассивном поведении фирмы В точка, представляющая объемы выпуска каждой из фирм, находится на линии реакции фирмы В, левее точки С;  при пассивном поведении фирмы А эта точка расположена на линии реакции фирмы А, правее точки С.
В рассматриваемом  примере создание картеля обеспечивает фирме В на 97 ед. прибыли больше, чем при самом благоприятном для нее варианте конкуренции, т. е. при пассивном приспособлении выпуска фирмы А к ее выпуску. Часть этого приращения прибыли фирма В может передать фирме А за согласие придерживаться картельной цены.

Рис. 5. Определение лимитной цены.
Монопольная   цена, обеспечивая картелю избыточную прибыль, стимулирует приток в отрасль новых конкурентов. Чтобы предотвратить появление новых производителей данной продукции, картель может установить лимитную цену (pl), не позволяющую новым фирмам получить прибыль. Графический способ определения лимитной цены показан на рис. 5.
Кривая  АС представляет средние затраты  на выпуск всех участников картельного соглашения. Для предотвращения появления новых конкурентов вместо сочетания Рм,0м, соответствующего точке Курно, нужно выбрать комбинацию pl,ql. Тогда остаточный (неудовлетворенный) спрос на данном рынке будет представлен отрезком pl , Q1, который целиком расположен ниже кривой средних затрат. Поэтому если потенциальные конкуренты имеют одинаковую с членами картеля технологию, то производить данное благо им не выгодно.
Выведем формулу лимитной цены. Пусть АС = l + k/Q. Прямая отраслевого спроса D построена по формуле цены спроса: Р = g— hQ. Соответственно прямая остаточного спроса при цене pl описывается формулой Рос = pl - hQ. В точке касания кривой средних затрат АС и прямой остаточного спроса PL,Q1   выполняется равенство
PL - hQ = l + k / Q                (1.3)
и наклоны  обеих линий одинаковы. Значит, dPoc / dQ =  dAC / dQ, т.е. -h =         -k/Q^ 2    ?      Q = (k / h)^1/2.
Следовательно, точка касания линий АС и Рос соответствует Q = (k / h)^1/2. Подставив это значение Q в равенство (1.3), получим формулу для определения лимитной цены:
PL = l + k / Q + h (k / h)^1/2 = l + 2(k / h)^ 1/2 

ГЛАВА 3. СГОВОР И КАРТЕЛИ
      Картель - это группа фирм, действующих совместно и согласующих решения по поводу объемов выпуска продукции и цен так, как если бы они были единой монополией. В некоторых странах, например в США, картели запрещены законом. Фирмы, обвиняемые в сговорах для совместного  установления цены и контроля над объемами выпускаемой продукции, подвергаются санкциям.
      Но  картель - это группа фирм, следовательно, он сталкивается с трудностями при установлении монопольных цен, которых не существует у чистой монополии. Основной проблемой картелей является проблема согласования решений между фирмами - членами и установления системы ограничений (квот) для этих фирм.
Образование картеля. Предположим в некоторой  местности несколько производителей стандартизированной продукции хотят образовать картель. Допустим, что есть 15 региональных поставщиков данного продукта. Фирмы назначают цену равную средним издержкам. Каждая из фирм боится поднять цену из опасения, что другие не последуют за ней  и ее прибыли станут отрицательными. Допустим, что выпуск находится на конкурентном уровне Qc (см. рис. 7 гр. А), соответствующему размеру выпуска, при котором кривая спроса пересекает кривую МС, являющейся горизонтальной суммой  кривых предельных издержек каждого продавца. Кривая МС была бы кривой спроса, если бы рынок был полностью конкурентным. Каждая фирма выпускает  1/15 часть общего выпуска Qc.
Рис. 7. 

Гр. А
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.