На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Реферат Рассмотрение понятия тождественного (единичного) оператора. Анализ методов решения линейных однородного и неоднородного уравнений. Ознакомление с определением эрмитовости оператора. Доказательство теоремы о свойствах ортогональности собственных функций.

Информация:

Тип работы: Реферат. Предмет: Математика. Добавлен: 16.08.2010. Сдан: 2010. Уникальность по antiplagiat.ru: --.

Описание (план):


Эрмитовы операторы

Содержание

    Линейные операторы
    Линейные уравнения
    Эрмитовы операторы
    Линейные операторы

    Пусть M и N -- линейные множества. Оператор L, преобразующий элементы множества M в элементы множества N, называется линейным, если для любых элементов f и g из M и комплексных чисел ? и ? справедливо равенство
    L(?+ ?g) = ?Lf + ?Lg (1)
    При этом множество M = ML называется областью определения оператора L. Если Lf = f при всех f Є M, то оператор L называется тождественным (единичным) оператором. Единичный оператор будем обозначать через I.

    Линейные уравнения

    Пусть L -- линейный оператор с областью определения ML . Уравнение
    Lu = F (2)
    называется линейным неоднородным уравнением. В уравнении (2) заданный элемент F называется свободным членом (или правой частью), а неизвестный элемент и из ML -- решением этого уравнения.
    Если в уравнении (2) свободный член F положить равным нулю, то полученное уравнение
    Lu = 0 (3)
    называется линейным однородным уравнением, соответствующим уравнению (2).
    В силу линейности оператора L совокупность решений однородного уравнения (3) образует линейное множество; в частности, и = 0 всегда является решением этого уравнения.
    Всякое решение и линейного неоднородного уравнения (2) (если оно существует) представляется в виде суммы частного решения ио этого уравнения и общего решения u, соответствующего линейного однородного уравнения (3)
    и = ио + u.
    Отсюда непосредственно выводим: для того чтобы решение уравнения (2) было единственным в ML, необходимо и достаточно, чтобы соответствующее однородное уравнение (3) имело только нулевое решение в ML . Пусть однородное уравнение (3) имеет только нулевое решение в ML. Обозначим через Rl область значений оператора L, т.е. (линейное) множество элементов вида {Lf}, где f пробегает ML. Тогда для любого F Є Rl уравнение (2) имеет единственное решение и Є ML , и, таким образом, возникает некоторый оператор, сопоставляющий каждому элементу F из Rl соответствующее решение уравнения (2). Этот оператор называется обратным оператором к оператору L и обозначается через L-1, так что
    и = L-1F. (4)
    Оператор L-1, очевидно, является линейным и отображает Rl на ML. Непосредственно из определения оператора L-1, а также из соотношений (2) и (4) вытекает:
    L L-1F = F, F Є Rl ; L-1Lu = u, и Є ML,
    т.е. L L-1=I, L-1L = I.
    Если линейный оператор L имеет обратный L-1, то системы функций {?k} и {L?k} одновременно линейно независимы. (При этом, естественно, предполагается, что все ?k принадлежат ML.)
    Рассмотрим линейное однородное уравнение
    Lu = ?u, (5)
    где ? -- комплексный параметр. Это уравнение имеет нулевое решение при всех ?. Может случиться, что при некоторых ? оно имеет ненулевые решения из ML. Те комплексные значения ?, при которых уравнение (5) имеет ненулевые решения из ML, называются собственными значениями оператора L, а соответствующие решения -- собственными элементами (функциями), соответствующими этому собственному значению. Полное число r, 1 ? r ? ?, линейно независимых собственных элементов, соответствующих данному собственному значению ?, называется кратностью этого собственного значения; если кратность r = 1, то ? называется простым собственным значением.
    Если кратность r собственного значения ? оператора L конечна и u1,...,и2 -- соответствующие линейно независимые собственные элементы, то любая их линейная комбинация
    u0 = c1u1 + c2u2 + ... + crur
    также является собственным элементом, соответствующим этому собственному значению, и приведенная формула дает общее решение уравнения (5). Отсюда вытекает: если решение уравнения
    Lu = ? u + f (6)
    существует, то его общее решение представляется формулой
    и = и* +?сkиk, (7)
    где и* -- частное решение (6) и сk, k = l,2,...,r, -- произвольные постоянные.

    Эрмитовы операторы
    Линейный оператор L, переводящий MLСL2(G) в L2(G), называется эрмитовым, если его область о и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.