На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


Курсовик Понятие задача в начальном курсе математики и её решения в начальных классах. Различные подходы к обучению младших школьников решению текстовых задач. Методические приёмы обучения решению простых задач. Разработка фрагментов уроков по данной проблеме.

Информация:

Тип работы: Курсовик. Предмет: Математика. Добавлен: 26.09.2014. Сдан: 2010. Уникальность по antiplagiat.ru: --.

Описание (план):


43
МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЯЗАНСКОЙ ОБЛАСТИ
Областное государственное образовательное учреждение
среднего профессионального образования
Рязанский педагогический колледж.
КУРСОВАЯ РАБОТА
по дисциплине: «Методика преподавания начального курса математики»
ЭТАПЫ ИЗУЧЕНИЯ ПОНЯТИЯ ЗАДАЧИ И ЕЁ РЕШЕНИЯ В НАЧАЛЬНЫХ КЛАССАХ
Приступлюк Ольга Николаевна
Рязань 2010
Содержание

Введение

Глава 1. Методико-математическая характеристика основных понятий исследования
1.1 Понятие
«задача» в начальном курсе математики
1.2 Различные подходы к обучению младших школьников решению текстовых задач
Глава 2. Последовательность изучения понятия задачи и её решения в начальных классах
2.1 Подготовительный этап к введению понятия «задача»
2.2 Введение понятия «задача» и методические приёмы обучения решению простых задач
2.3 Понятие «составная задача» и различные подходы к изучению этого понятия
Заключение
Список литературы
Приложение
Введение
В начальной школе задачи выполняют не только функцию самостоятельного объекта изучения, но и важного средства, с помощью которого младшие школьники осваивают математические понятия, такие, как: «задача», «условие», «вопрос», «требование», «известное», «данное», «неизвестное», «столько же», «больше (меньше) на а», «больше (меньше) в раз» и др.
Тема данной курсовой работы является весьма актуальной, т.к. ребёнок с первых дней в школе встречается с задачей. Сначала и до конца обучения в школе математическая задача неизменно помогает ученику глубже выяснить различные стороны взаимосвязей в окружающей жизни, расширить свои представления о реальной действительности, учиться решать и другие математические и нематематические задачи. Задачи показывают значение математики в повседневной жизни, помогают детям использовать полученные знания в практической деятельности. Решение задач занимает в математическом образовании огромное место. Умение решать задачи является одним из основных показателей уровня математического развития, глубины освоения учебного материала.
Учителю необходимо сформировать умение решать задачи, а для этого, прежде всего, он должен уметь решать их сам, а так же владеть необходимыми знаниями, чтобы учить этому других.
Объект исследования: процесс обучения младших школьников решению текстовых задач.
Предмет исследования: цели и содержание этапов изучения понятий «задача», «решение задачи», «известное», «неизвестное» и др. в начальных классах.
Цели исследования:
Познавательная - исследовать цели и содержание этапов изучения понятия задачи и её решения в начальных классах.
Практическая - разработать фрагменты уроков по теме исследования.
Задачи:
1. изучить методико-математическую и учебную литературу по данной теме;
2. описать различные методические подходы обучения младших школьников решению текстовых задач;
3. отобрать учебно-методический материал для разработки фрагментов уроков по данной проблеме исследования;

Гипотеза: Если изучать понятие задачи и её решения последовательно, поэтапно, предлагая, соответствующие каждому этапу разнообразные методические приёмы, то учащиеся будут знать, что задача состоит из условия и вопроса, которые взаимосвязаны, что существуют простые и составные задачи, что в задаче есть известные (данные) величины и неизвестные и среди неизвестных есть искомое, что ответ на требование задачи получается в результате её решения и др. Так же учащиеся будут уметь решать текстовые задачи различными способами. У них будут развиваться основные мыслительные операции (анализ, синтез, классификация, обобщение, сравнение, аналогия, абстракции), зрительная и слуховая память, устная монологическая речь, произвольное внимание, воображение, воспитываться трудолюбие, любовь к окружающему миру, усидчивость, любознательность, терпение, настойчивость и др.


Глава 1. Методико-математическая характеристика основных понятий исследования

1.1 Понятие «задача» в начальном курсе математики

С термином «задача» люди постоянно сталкиваются в повседневной жизни как на бытовом, так и на профессиональном уровне. Каждому из нас приходится решать те или иные проблемы, которые зачастую мы называем задачами. Проблема решения и чисто математических задач, и задач, возникающих перед человеком в процессе его производственной или бытовой деятельности, изучается издавна, однако до настоящего времени нет общепринятой трактовки самого понятия «задача». В широком смысле слова под задачей понимается некоторая ситуация, требующая исследования и разрешения человеком.
Отдельно стоят математические задачи, решение которых достигается специальными математическими средствами и методами. Среди них выделяют задачи научные, решение которых способствует развитию математики и ее приложений, и задачи учебные, которые служат для формирования необходимых математических знаний, умений и навыков.
Учебные математические задачи различаются по характеру их объектов. В одних задачах все объекты математические (числа, геометрические фигуры, функции и т.п.), в других объектами являются реальные предметы (люди, животные, автотранспортные и механические средства, сплавы, жидкости и т.д.) или их свойства и характеристики (количество, возраст, скорость, производительность, длина, масса и т.п.). Задачи, все объекты которых математические (доказательства теорем, вычислительные упражнения, установление признаков изучаемого математического понятия и т.д.), часто называют математическими заданиями.
Любое математическое задание можно рассматривать как задачу, выделив в нём условие, т.е. ту часть, где содержатся сведения об известных и неизвестных значениях величин, об отношениях между ними, и требование - все неизвестные величины или отношения между ними, которые надо найти.
Математические задачи, в которых есть хотя бы один объект, являющийся реальным предметом, принято называть текстовыми.
Текстовой задачей будем называть [6, 3] описание некоторой ситуации (явления, процесса) на естественном и (или) математическом языке с требованием либо дать количественную характеристику какого-то компонента этой ситуации (определить числовое значение некоторой величины по известным числовым значениям других величин и зависимостям между ними), либо установить наличие или отсутствие некоторого отношения между ее компонентами или определить вид этого отношения, либо найти последовательность требуемых действий.
Придерживаясь современной терминологии, можно сказать, что текстовая задача представляет собой словесную модель ситуации, явления, события, процесса и т.п. Как в любой модели, в текстовой задаче описывается не все событие или явление, а лишь его количественные и функциональные характеристики.
Основная особенность текстовых задач состоит в том, что в них не указывается прямо, какое именно действие (или действия) должно быть выполнено для получения ответа на требование задачи.
В каждой задаче можно выделить:
· числовые значения величин, которые называются данными, или известными (их должно быть не меньше двух);
· некоторую систему функциональных зависимостей в неявной форме, взаимно связывающих искомое с данными и данные между собой;
· требование, которое надо выполнить, или вопрос, на который надо найти ответ.
Числовые значения величин и существующие между ними закономерности, т.е. количественные и качественные характеристики объектов задачи и отношений между ними, называют условиями (или условием) задачи.
Требования могут быть сформулированы как в вопросительной, так и в повествовательной форме. Величину, значения которой требуется найти, называют искомой величиной, а числовые значения искомых величин - искомыми, или неизвестными.
Текстовые задачи имеют и другие названия: практические, аналитические, арифметические и др.
Л.М. Фридман называет такие задачи сюжетными. И понимает под этим словом задачи, в которых описан некоторый жизненный сюжет (явление, событие, процесс), с целью нахождения определённых колличественных характеристик или значений. Сюжетные задачи - это наиболее древний вид школьных задач. Они всегда широко использовались и будут использоваться в обучении математике. Ещё задолго до нашей эры в Древнем Египте, Вавилоне, Китае, Индии были известны и многие методы их решения. Однако со временем цели и функции решения сюжетных задач существенно изменялись и видоизменяются до сих пор.
Если примерно до XIX в. цели решения этих задач были чисто практические: научить решать задачи, которые часто встречаются в жизненной практике, то затем эти цели значительно расширились и, кроме практических целей, они начинают использоваться как важное общеобразовательное и методическое средство.
Л.М. Фридман так описывает происхождение понятия «задача» [16, 63]: проблемная ситуация образуется из следующих компонентов: действующего субъекта С, цели его деятельности -- объекта О, на который направлена деятельность субъекта С, и преграды (затруднения) П.
Однако указанное условие возникновения проблемной ситуации (наличие преграды на пути осуществления цели деятельности) является лишь необходимым, но недостаточным для того, чтобы субъект действительно «вошел» в проблемную ситуацию. Надо чтобы он осознал, заметил эту преграду и чтобы захотел устранить (преодолеть) ее. Следовательно, проблемная ситуация -- это не просто затруднение, преграда на пути деятельности субъекта, а осознанное им затруднение, способ устранения которого он желает найти. Только в этом случае у субъекта возникает активная мыслительная деятельность. Он пытается «децентрироваться» от ситуации: до сих пор субъект был центром этой ситуации, а теперь хочет выйти за ее пределы, чтобы взглянуть на нее со стороны. Для этого он как бы «раздваивается»: наряду с физическим субъектом, находящимся в проблемной ситуации, возникает «мыслящий» субъект М, который рассматривает и анализирует возникшую ситуацию как бы со стороны, выявляет все ее составные части, связи и отношения между ними, характер и особенности преграды. Результат этого анализа М выражает на каком-то языке (обычно на естественном).
Тем самым возникает описание проблемной ситуации, т.е. ее знаковая модель -- это и есть задача. Итак, генезис задачи можно рассматривать как моделирование проблемной ситуации, в какую попадает субъект в процессе своей деятельности, а саму задачу -- как знаковую модель проблемной ситуации.
Известный русский методист В.А. Евтушевский так охарактеризовал функции сюжетных задач в обучении начальной математике: «Задачи, предлагаемые в классе, заключают в себе живой материал для упражнения мышления ученика, для вывода математических правил и для упражнения в приложении этих правил в решении частных практических вопросов» .
Итак, понятие «задача» имеет несколько определений, которые представлены выше, а так же дана общая характеристика текстовой (сюжетной) задачи.
1.2. Различные подходы к обучению младших школьников решению текстовых задач
Вопрос о том, как научить детей устанавливать связи между данными и искомыми в текстовой задаче и в соответствии с этим выбрать, а затем выполнить арифметические действия, решается в методической науке по-разному. Тем не менее, все многообразие методических рекомендаций, связанных с обучением младших школьников решению задач, целесообразно рассматривать с точки зрения двух принципиально отличающихся друг от друга подходов
[7, 204].
Один подход нацелен на формирование у учащихся умения решать задачи определенных типов и видов (методисты, следующие этому подходу: Эрдниев П.М., Белошистая А.В, Моро М.И., Бантова М.А., Бельтюкова Г.Б. и др.)
Дети сначала учатся решать простые задачи а затем составные, включающие в себя различные сочетания простых задач.
Процесс обучения решению простых задач является одновременно процессом формирования математических понятий. В связи с этим, в зависимости от тех понятий, которые рассматриваются в курсе математики начальных классов, простые задачи делятся на три группы:
· первая группа включает простые задачи, при решении которых дети усваивают конкретный смысл каждого из арифметических действий (сложение, вычитание, умножение, деление);
· вторая группа включает простые задачи, при решении которых учащиеся усваивают связь между компонентами и результатами арифметических действий. Это простые задачи на нахождение неизвестного компонента (8 видов);
· третья группа - простые задачи, при решении которых раскрываются понятия разностного сравнения (6 видов) и кратного отношения (6 видов);
Научить детей решать задачи -- значит, научить их устанавливать связи между данными и искомым и в соответствии с этим выбирать, а затем и выполнять арифметические действия.
Центральным звеном в умении решать задачи, которым должны овладеть учащиеся, является усвоение связей между данными и искомым. От того, насколько хорошо усвоены учащимися эти связи, зависит их умение решать задачи. Учитывая это, в начальных классах ведется работа над группами задач, решение которых основывается на одних и тех же связях между данными и искомым, а отличаются они конкретным содержанием и числовыми данными. Группы таких задач будем называть задачами одного вида. Работа над задачами не должна сводиться к натаскиванию учащихся на решение задач сначала одного вида, затем другого и т. д. Главная ее цель -- научить детей осознанно устанавливать определенные связи между данными и искомым в разных жизненных ситуациях, предусматривая постепенное их усложнение. Чтобы добиться этого, учитель должен предусмотреть в методике обучения решению задач каждого вида такие ступени:
1)подготовительную работу к решению задач;
2)ознакомление с решением задач;
3)закрепление умения решать задачи.
Составная задача включает в себя ряд простых задач, связанных между собой так, что искомые одних простых задач служат данными других. Решение составной задачи сводится к расчленению ее на ряд простых задач и к последовательному их решению. Таким образом, для решения составной задачи надо установить систему связей между данными и искомым, в соответствии с которой выбрать, а затем выполнить арифметические действия.
Методика работы с каждым новым видом составных задач, согласно данному подходу, ведется также в соответствии с тремя ступенями: подготовительная, ознакомительная, закрепление. Процесс решения каждой составной задачи осуществляется поэтапно:
1.Ознакомление с содержанием задачи.
2.Поиск решения задачи.
3.Составление плана решения.
4.Запись решения и ответа.
5.Проверка решения задачи.
Сначала задачу читает учитель или кто-то из учеников (первое прочтение). Затем учащимся предлагается прочитать задачу про себя, так как не все могут сосредоточиться на ее содержании, когда один из учеников читает вслух (второе прочтение).
-Кто может повторить задачу? (Дети воспроизводят текст по памяти - третье прочтение).
-Выделите условие и вопрос задачи (четвертое прочтении). Фактически опять воспроизводится текст.
-Что нам известно? (пятое прочтение, ученики воспроизводит условие).
-Что неизвестно? (Воспроизводится вопрос.)
Как видно, действия школьников сводятся к тому, что они пять раз воспроизводят текст: сначала читают вслух, затем про себя, потом по частям (условие и вопрос), выделяют известное и неизвестное.
Результатом этой работы, должно явиться осознание текста, т.е. представление той ситуации, которая нашла в нем отражение. Но практика показывает, что многократное воспроизведение текст задачи не всегда эффективно для его осознания. Ученики читают задачу, воспроизводят ее, выделяют условие и вопрос, утвердительно отвечают на вопрос: «Понял ли ты задачу?», но самостоятельно приступить к ее решению не могут.
В этом случае учитель пытается помочь детям, дополняя фронтальную беседу выполнением краткой записи.
Используя такую запись, он организует целенаправленный поиск решения, применяя один из способов разбора задачи: синтетический или аналитический.
Используя при решении каждой задачи аналитический или синтетический способ разбора, учитель в конечном итоге добивается, что дети сами задают себе эти вопросы в определенной последовательности и выполняют рассуждения, связанные с решением задачи.
Основным методом обучения решению составных задач при этом подходе является показ способов решения определенных видов задач и значительная, порой изнурительная практика по овладению ими, т.е. используется объяснительно-иллюстративный и репродуктивный методы обучения (классификация И.Я. Лернера - М.Н.Cкаткина). Поэтому многие учащиеся решают задачи лишь по образцу.
Цель другого подхода, (по мнению его сторонников: Истоминой Н.Б., Фридмана Л.М., Александровой Э.А., Аргинской И.И. и др.) - научить детей выполнять семантический, логический и математический анализ текстовых задач, выявлять взаимосвязи между условием и вопросом, данными и искомыми и представлять эти связи в виде схематических и символических моделей.
Процесс решения задач (простых и составных) рассматривается как переход от словесной модели к модели математической или схематической. В основе осуществления этого перехода лежит семантический анализ текста (установление особенности словесной формулировки этих задач, выявление, какими языковыми средствами выражаются в них отдельные элементы, как можно на основе анализа словесной формулировки задачи распознать отдельные значения величин и их виды, а так же соотношения, связывающие значения величин и т.д.) [15, 89] и выделение в нем математических понятий и отношений (математический анализ текста). Естественно, учащиеся должны быть подготовлены к этой деятельности. Отсюда следует, что знакомству младших школьников с текстовой задачей должна предшествовать специальная работа по формированию математических понятий и отношений, которые они будут использовать при решении текстовых задач. Так как процесс решения задач связан с выделением посылок и построением умозаключений, необходимо также сформировать у младших школьников (до знакомства с задачей) те логические приемы мышления (анализ и синтез, сравнение, обобщение), которые обеспечивали бы их мыслительную деятельность в процессе решения задач.
Таким образом, готовность школьников к знакомству с текстовой задачей предполагает сформированность:
1) умения описывать предметные ситуации и переводить их на язык схем и математических символов;
2) представлений о смысле действий сложения и вычитания, и взаимосвязи;
3) понятий «увеличить (уменьшить) на», разностного сравнения;
4) навыков чтения;
5) умения переводить текстовые ситуации в предметные и схематические модели и обратно и др.
Именно второй подход позволяет в большей степени формировать общее умение решать текстовые задачи.
Чтобы научить ребёнка решать текстовые задачи, учитель должен в разумном сочетании использовать оба подхода. А всё многообразие методических рекомендаций, связанных с обучением младших школьников решению задач, целесообразно рассматривать преимущественно с точки зрения второго подхода.
Глава 2. Последовательность изучения понятия задачи и её решения в начальных классах
2.1 Подготовительный этап к введению понятия «задача»
Перед ознакомлением с понятием «задача» в начальной школе необходимо провести подготовительную работу. Каждый методист представляет её по своему, рассмотрим некоторые подходы.
Методисты Бантова М.А., Бельтюкова Г.В. [2, 175] предлагают на этой первой ступени обучения решению задач того или другого вида создать у учащихся готовность к выбору арифметических действий при решении соответствующих задач: они должны усвоить знание тех связей, на основе которых выбираются арифметические действия, знание объектов и жизненных ситуаций, о которых говорится в задачах.
До решения простых задач определённого вида ученики усваивают знания о связях операций над множествами с арифметическими действиями, т. е. конкретный смысл арифметических действий. Например, операция объединения непересекающихся множеств связана с действием сложения. Позже школьники узнают, что отношения «больше» и «меньше» (на несколько единиц и в несколько раз) связаны с арифметическими действиями, т. е. конкретный смысл выражений «больше на . . . », «больше в . . . раз», «меньше на . . . », «меньше в . . . раз». Они овладевают взаимосвязью между компонентами и результатами арифметических действий, изучают правила нахождения одного из компонентов арифметических действий по известным результату и другому компоненту.
При ознакомлении с решением первых простых задач ученики должны усвоить понятия и термины, относящиеся к самой задаче и ее решению (задача, условие задачи, вопрос задачи, решение задачи, ответ на вопрос задачи).
При решении составных задач ученики должны уметь устанавливать не одну связь, а систему связей, т. е. устанавливать несколько связей, выстраивая их в определенном порядке. Подготовкой к решению составных задач будет не только усвоение учащимися соответствующих связей, но и умение вычленять систему связей, иначе говоря, разбивать составную задачу на ряд простых, последовательное решение которых и будет решением составной задачи. Важно на подготовительной ступени знакомить детей с объектами, о которых говорится в задачах (например, с величинами), а также с соответствующими ситуациями, описанными в задачах, организуя специальные наблюдения жизненных ситуаций.
Вся подготовительная работа сводится к выполнению учащимися специальных упражнений, помогающих усвоить им знание названных связей и ознакомиться с объектами и жизненными ситуациями, отраженными в задачах. При работе над каждым отдельным видом задач требуется своя специальная подготовительная работа.
Истомина Н.Б. [7] предлагает до знакомства младших школьников с понятием «задача» провести специальную работу способствующую приобретению учащимися определенного опыта в соотнесении предметных, текстовых схематических и символических моделей, который они смогут использовать для интерпретации текстовой модели.
Готовность школьников к знакомству с текстовой задачей предполагает сформированность:
·
навыков чтения;
· представлений о смысле действий сложения и вычитания, их взаимосвязи, понятий «увеличить (уменьшить) на а», разностного сравнения;
· основных мыслительных операций: анализ и синтез, сравнение;
· умения описывать предметные ситуации и переводить их на язык схем и математических символов;
· умения чертить, складывать и вычитать отрезки;
· умения переводить текстовые ситуации в различные модели и обратно.
Например, детям предлагается практические задания [8, 154]:
Положите 5 морковок, затем еще 2. Сколько всего морковок вы положили?
Ответ на вопрос (подчеркнем, что данное задание учитель не называет задачей) может быть получен как путем пересчитывания морковок (начиная с первой) так и путем присчитывания: в этом случае 5 рассматривается как количественное число, к которому присчитываются две единицы. Перевод данной ситуации на язык арифметических действий - высокий уровень оперирования числами. Работа по формированию умения переводить реальную ситуацию на язык математических знаков сводится к следующему: учитель акцентирует внимание учащихся на том, что сначала было 5 морковок.
-Каким математическим знаком (цифрой) это можно обозначить? (5.) К ним добавили 2 морковки.
-Каким знаком можно это обозначить? На доске и в кассах цифр появляется запись:
Теперь надо разъяснить смысл знака «+». (В математике применяется особый знак для обозначения увеличения числа предметов.) Учитель показывает место этого знака в записи, также место числа 7 и знака «=».
Знакомство школьников с числовым равенством требует подробных разъяснений. Здесь не следует полагаться на тот опыт, который дети в том или ином виде приобрели до школы. Ведь для ребенка это фактически совсем новый, неизвестный математический язык. Ему, собственно, так и следует говорить об этом, объясняя смысл каждого нового значка и соотнося его с реальными ситуациями.
Для овладения умением переводить предметные действия на язык математических знаков полезно использовать схемы вида:
+ =
которые сопровождают предметные действия или иллюстрации. Например:
В одной вазе 5 цветов, в другой -- 4. Сколько цветов в обеих вазах? Реальная ситуация соотносится со схемой: + =
-В какое «окошко» запишем число 5? Число 4? Число 9?
Последовательность этих вопросов следует варьировать, т.е. начинать с «окошка» после знака «равно», затем спрашивать, какое число запишем во второе «окошко» и т.д.
При формировании умения, о котором идет речь, следует идти не только от предметных действий к математическим знакам, но и, наоборот. Например, даны записи: 5+4=9, 5-4=1. Учитель проделывает сначала одни действия: выставляет на наборное полотно 5 предметов, затем убирает 4 и спрашивает: какой записи соответствует то действие, которое он выполнил? Затем предлагает ситуацию, которая соответствует другой записи.
Для формирования математических понятий можно предлагать и такие практические задания, которые не связаны с нахождением числового результата. Например, учитель показывает детям мешочек и говорит, что в нем находятся красные и синие шарики.
-Как сделать так, чтобы в мешочке остались только красные шарики? (Нужно вынуть (удалить, отнять) синие.) -- Значит, какое арифметическое действие нужно выполнить? (Вычитание.) -- Почему? (Шариков станет меньше.) Ученик вынимает синие шарики из мешочка (их 3).
-Я не знаю, сколько красных шариков осталось в мешочке; давайте обозначим их красным квадратом, все шарики, которые были в мешочке -- квадратом, который закрасим в красный и синий цвета (рис. 1)
Рис. 1
Какая запись будет соответствовать тем действиям, которые мы выполнили (рис. 2)?
или
Рис. 2
Обсуждение этих записей позволяет учащимся сделать вывод, что от всех шариков, которые были в мешочке, отняли синие (которые вынули), получили красные.
Затем можно предложить детям запись (рис. 3), анализ которой позволит им сделать вывод о том, какого цвета были три шарика. Продолжая работу с этим заданием, учитель может предложить следующий вопрос: «А если я синие шарики положу обратно в мешочек, то как тогда могу записать выполненное действие?».
Рис. 3
Белошистая А.В. считает что необходимо учитывать тот факт, что для самостоятельной работы над текстом задачи понадобится умение хорошо читать, а оно формируется у многих детей не в полной мере даже к концу первого класса, педагогам при обучении таких детей приходится целиком и полностью работать с ними «на слух».
В этой ситуации важнейшее значение приобретает умение ребенка не только внимательно слушать предлагаемый текст, но и правильно представлять себе ситуацию, заданную условием. Именно ориентируясь на свое представление о заданной ситуации, ребенок будет выбирать арифметическое действие, требующееся для решения задачи.
В этой связи прежде чем приступать к знакомству с задачей и обучению решению задач, необходимо сформировать у ребенка целый комплекс умений:
·
слушать и понимать тексты различных структур;
· правильно представлять себе и моделировать ситуации, предлагаемые педагогом;
· правильно выбирать действие в соответствии с ситуацией;
· составлять математическое выражение в соответствии с выбранным действием, выполнять простые вычисления (как минимум, отсчитыванием и присчитыванием).
Эти умения являются базовыми для подготовки ребенка к обучению решению задач.
Таким образом к введению понятия «задача» можно переходить, выполнив соответствующую подготовительную работу. Каждый методист представляет эту работу по-своему.
Бантова М.А. и Бельтюкова Г.В. считают, что на первый план в подготовке детей к решению текстовых задач выходит создание у учащихся готовность к выбору арифметических действий, а так же изучение с детьми правил нахождения компонентов, формирование умения устанавливать связи между данными и неизвестными, компонентами и результатами арифметических действий и др. Истомина Н.Б. предполагает, что в подготовительной работе должно быть отведено значительное место и развитию основных мыслительных операций, навыков чтения, умения переводить текстовые ситуации в модели и др.
2.2 Введение понятия «задача» и методические приёмы обучения решению простых задач
Истомина Н.Б. считает, что работа, проведенная на подготовительном этапе к знакомству с текстовой задачей, позволяет организовать деятельность учащихся, направленную на усвоение ее структуры и на осознание процесса ее решения.
При этом существенным является не отработка умения решать определенные типы (виды) текстовых задач, а приобретение учащимися опыта в семантическом и математическом анализе различных текстовых конструкций задач и формирование умения представлять их в виде схематических и символических моделей.
Провести первый урок по этой теме довольно сложная методическая задача для учителя. Важно, чтобы в результате проведённой работы учащиеся осознали - на что будет направлена их дальнейшая деятельность. Предлагаем детям сравнить тексты [10, 49]:
Какой текст можно назвать задачей, а какой нет?
o Маша нашла 7 лисичек, а Миша на 3 лисички больше.
o Маша нашла 7 лисичек, а Миша 5. Сколько всего лисичек нашли Миша и Маша?
Этим задание учитель должен вывести детей на обсуждение структуры задачи:
Можно ли назвать текст задачей, если в нём нет вопроса? Если да, то что вы скажете о таких текстах:
o Сколько всего учеников в классе?
o На сколько больше марок у Пети, чем у Иры?
Можно ли назвать текст задачей, если в нём только вопрос?
После этого дети формулируют вывод: любая задача состоит из условия и вопроса.
После этого предлагаем им составить условия к этим вопросам.
Для осознания учащимися взаимосвязи между условием и вопросом, детям предлагается задание:
Будут ли эти тексты задачами?
o На одной тарелке 3 огурца, а на другой 4. Сколько помидоров на двух тарелках?
o На клумбе 5 тюльпанов и 3 розы. Сколько пионов росло на клумбе?
Учащиеся должны заметить, что ответить на вопрос, поставленный в задачах, мы не сможем, пользуясь данным условием. Можно предложить изменить вопрос задачи и сделать вывод, что условие и вопрос задачи связаны между собо и т.д.................


Перейти к полному тексту работы



Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.