Здесь можно найти образцы любых учебных материалов, т.е. получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ и рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


курсовая работа Расчет термодинамического цикла

Информация:

Тип работы: курсовая работа. Добавлен: 18.10.2012. Сдан: 2012. Страниц: 4. Уникальность по antiplagiat.ru: < 30%

Описание (план):


?Расчет термодинамического цикла
Рабочее тело - идеальный газ
K=1,33

R= 8,31 Дж/(моль * К)
Р1= 760мм рт. ст.= 0,10 МПа
T1= 273 K
степень сжатия ;
степень повышения давления ;

Идеальный цикл ДВС состоит из
1 – 2 и 3 - 4  - изохоры
2 – 3  - изобары
4 – 1 политропный процесс
Цикл осуществляется одним молем газа (идеальным).
Находим параметры состояния рабочего тела, и определяем из уравнения ;

(1 – 2) изохорный процесс




(2 – 3) изобарный процесс:
               
(3 – 4) изохорный процесс

По графику примем
;


(4 – 1) политропный процесс
– уравнение политропы, где  n – показатель политропы


Зависимость между начальными и конечными параметрами процесса



, значит, из (3 - 4)

Для более точного расчета температуры найдем из уравнения



Таблица 1
Параметры состояния идеального газа в характерных точках цикла
            Параметр
 
Характерная точка
, МПа
, м3
, К
1
0,1
0,023
273
2
0,23
0,023
628
3
0,23
0,115
3247
4
0,17
0,115
2353
Подводимая теплота


;  
;      

Отводимая теплота




Работа сжатия


Работа расширения


Работа цикла


Термический коэффициент полезного действия



Изменение энтропии в каждом процессе
(1 - 2)                           

(2 - 3)              

(3 – 4)             

(4 – 1)             

Построение цикла в масштабе координатах P,V и T,S
T,S диаграмма
По оси абсцисс откладываются в масштабе численные значения энтропии, а по оси ординат температуры. Принимая точку 1 (начало) произвольно на оси абсцисс, но соответствующую для данной точке 1 на оси ординат температуре, от нее откладываем влево отрицательные значения изменение энтропии (), а вправо - положительные значения, согласно выбранного масштаба. Температуры должны соответствовать табл.1 для данной точки линии процесса. Последовательно откладывая значения температур и, соответственно, для линии процесса.
Точка
Т, К
, Дж
1
273
15(произвольная)
 
400
25
 
500
31
2
628
36
 
1000
52
 
1500
65
 
2000
73
 
2500
80
3
3247
91
 
2700
85
4
2353
81
 
1700
71
 
1200
60
 
600
40
 
P, V диаграмма
Точка
, кПа
, дм3
1
100
23
2
230
23
3
230
115
4
170
115
 

1)Массообмен: испарение воды в воздух
Испарение (парообразование), переход вещества из конденсированной (твердой или жидкой) фазы в газообразную (пар); фазовый переход первого рода. Испарение твердого тела называется сублимацией (возгонкой), а парообразование в объеме жидкости - кипением . Обычно под испарением понимают парообразование на свободной поверхности жидкости в результате теплового движения ее молекул при температуре ниже точки кипения. соответствующей давлению газовой среды, расположенной над указанной поверхностью. При этом молекулы, обладающие достаточно большой кинетической энергией, вырываются из поверхностного слоя жидкости в газовую среду; часть их отражается обратно и захватывается жидкостью, а остальные безвозвратно ею теряются.
Испарение - эндотермический процесс, при котором поглощается теплота фазового перехода - теплота испарения, затрачиваемая на преодоление сил молекулярного сцепления в жидкой фазе и на работу расширения при превращении жидкости в пар. Удельную теплоту испарения относят к 1 молю жидкости (молярная теплота испарения, Дж/моль) или к единице ее массы (массовая теплота испарения, Дж/кг). Скорость испарения определяется поверхностной плотностью потока пара jп, проникающего за единицу времени в газовую фазу с единицы поверхности жидкости [в моль/(с.м2) или кг/(с.м2)]. Наибольшее значение jп достигается в вакууме. При наличии над жидкостью относительно плотной газовой среды испарение замедляется вследствие того, что скорость удаления молекул пара от поверхности жидкости в газовую среду становится малой по сравнению со скоростью испускания их жидкостью. При этом у поверхности раздела фаз образуется слой парогазовой смеси, практически насыщенный паром. Парциальное давление и концентрация пара в данном слое выше, чем в основной массе парогазовой смеси.
Нарушение термодинамического равновесия между жидкостью и паром, содержащимся в парогазовой смеси, объясняется скачком температуры на границе раздела фаз. Однако обычно этим скачком можно пренебречь и принимать, что парциальное давление и концентрация пара у поверхности раздела фаз соответствуют их значениям для насыщенного пара, имеющего температуру поверхности жидкости. Если жидкость и паро-газовая смесь неподвижны и влияние свободной конвекции в них незначительно, удаление образовавшегося при испарении пара от поверхности жидкости в газовую среду происходит в основном в результате молекулярной диффузии и появления вызываемого последней при полупроницаемой (непроницаемой для газа) поверхности раздела фаз массового (так называемого стефановского) потока парогазовой смеси, направленного от поверхности жидкости в газовую среду.

Рис. Распределение температур при различных режимах испарительного охлаждения жидкости. Потоки теплоты направлены: а - от жидкой фазы к поверхности испарения в газовую фазу; б - от жидкой фазы только к поверхности испарения; в - к поверхности испарения со стороны обеих фаз; г - к поверхности испарения только со стороны газовой фазы.
Эффекты баро- и термодиффузии при инженерных расчетах обычно не учитываются, но влияние термодиффузии может быть существенным при высокой неоднородности парогазовой смеси (при большом различии молярных масс ее компонентов) и значительных градиентах температур. При движении одной или обеих фаз относительно поверхности их раздела возрастает роль конвективного переноса вещества и энергии парогазовой смеси и жидкости.
При отсутствии подвода энергии к системе жидкость-газ от внеш. источников теплота Испарение может подводиться к поверхностному слою жидкости со стороны одной или обеих фаз. В отличие от результирующего потока вещества, всегда направленного при испарении от жидкости в газовую среду, потоки теплоты могут иметь разные направления в зависимости от соотношений температур основной массы жидкости tж, границы раздела фаз tгр и газовой среды tг (см. рис.). При контакте определенного кол-ва жидкости с полубесконечным объемом или омывающим ее поверхность потоком газовой среды и при температуре жидкости, более высокой, чем температура газа (tж > tгр > tг), возникает поток теплоты со стороны жидкости к поверхности раздела фаз: (Qжг = Qж — Qи, где Qи -теплота испарения, Qжг - количество теплоты, передаваемой от жидкости газовой среде. При этом жидкость охлаждается (так называемое испарительное охлаждение). Если в результате такого охлаждения достигается равенство tгр = tг, теплоотдача отжидкости к газу прекращается (Qжг = 0) и вся теплота, подводимая со стороны жидкости к поверхности раздела, затрачивается на Испарение (Qж = Qи).
В случае газовой среды, не насыщенной паром, парциальное давление последнего у поверхности раздела фаз и при Qж= Qи остается более высоким, чем в основной массе газа, вследствие чего испарение и испарительное охлаждениежидкости не прекращаются и tгр становится ниже tж и tг. При этом теплота подводится к поверхности раздела от обеих фаз до тех пор, пока в результате понижения tж достигается равенство tгр = tж и поток теплоты со стороныжидкости прекращается, а со стороны газовой среды Qгж становится равным Qи. Дальнейшее испарение жидкостипроисходит при постоянной температуре tм = tж = tгр, которую называют пределом охлаждения жидкости при испарительном охлаждении или температурой мокрого термометра (т.к. ее показывает мокрый термометр психрометра). Значение tм зависит от параметров парогазовой среды и условий тепло- и массообмена между жидкой и газовой фазами. 
Если жидкость и газовая среда, имеющие различные температуры, находятся в ограниченном объеме, не получающем энергию извне и не отдающем ее наружу, Испарение происходит до тех пор, пока между двумя фазами не наступает термодинамическое равновесие, при котором температуры обеих фаз уравниваются при неизменной энтальпии системы, и газовая фаза насыщается паром при температуре системы tад. Последняя, называется температурой адиабатического насыщения газа, определяется только начальными параметрами обеих фаз и не зависит от условий тепло- и массообмена. 
2) Цикл Сти?рлинга — термодинамический цикл, описывающий рабочий процесс машины Стирлинга, запатентованной в 1816 г. шотландским изобретателем Робертом Стирлингом, приходским священником по профессии.
Помимо рабочего тела, нагревателя и холодильника абстрактная машина Стирлинга содержит ещё регенератор — устройство, отводящее тепло от рабочего тела на некоторых этапах цикла, и отдающее это тепло рабочему телу на других этапах. Идеальный цикл Стирлинга состоит из процессов:

 
T—V диаграмма идеального цикла Стирлинга с регенератором.
?                    1—2 изотермическое расширение рабочего тела с подводом тепла от нагревателя;
?                    2—3 изохорный отвод тепла от рабочего тела к регенератору;
?                    3—4 изотермическое сжатие рабочего тела с отводом тепла к холодильнику;
?                    4—1 изохорический нагрев рабочего тела с подводом тепла от регенератора.
В расчёте на один моль рабочего тела тепло, подведённое за цикл от нагревателя (см. изотермический процесс) определяется выражением:
 (здесь  — универсальная газовая постоянная).
Тепло, отведённое за цикл к холодильнику: 
.
Тепло, отдаваемое в процессе 2—3 регенератору и возвращаемое от него в процессе 4—1 равно:
 . (здесь  — молярная теплоёмкость идеального газа при постоянном объёме) Это тепло сохраняется в системе, являясь частью её внутренней энергии, которая за цикл не изменяется. Регенератор, таким образом, позволяет экономить тепло, расходуемое нагревателем за счёт уменьшения тепла, отводимого к холодильнику, и, тем самым, повысить термодинамическую эффективность двигателя Стирлинга.
Термический коэффициент полезного действия идеального цикла Стирлинга равен:
 .
Таким же выражением определяется термический КПДцикла Карно.
Цикл, подобный циклу Стирлинга, но без регенератора, осуществим, хотя и менее эффективен. В изохорном процессе 2—3 такого цикла тепло отводится от рабочего тела непосредственно к холодильнику, а в процессе 4—1 — подводится от нагревателя. КПД такого цикла будет определяться выражением:
 .
Нетрудно видеть, что это выражение при ненулевом  и при тех же значениях  и , что и в цикле с регенератором, имеет меньшую величину.
Пройденный в обратном направлении (4—3—2—1—4), цикл Стирлинга описывает холодильную машину. При этом направления передачи тепла ,, и  меняются на противоположные. Наличие регенератора является необходимым условием осуществимости холодильного цикла Стирлинга, поскольку согласно второму началу термодинамики в изохорном процессе (3—2) невозможно нагреть рабочее тело от холодильника, имеющего более низкую температуру, или передать тепло в процессе (1—4) от рабочего тела нагревателю, имеющему более высокую температуру.

ЛИТЕРАТУРА.
 
1. Техническая термодинамика: пособие по выполнению курсовой работы/авт.-сост.: М.Н. Новиков, А.В. Овсянник, Д.А. Дробышевский.-Гомель:ГГТУ им.П.О.Сухого,2006
2. Нащекин В.В. Техническая термодинамика и теплопередача. - М.: Высшая школа,1980

3. Вукалович М.П., Новиков Н.И. Техническая термодинамика, М.:   Энергия,1972

4. Теплотехника под ред. А.П. Воскакова, М.:Энергоатомиздат,1991

3

 




и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.