На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


контрольная работа Энергетика и окружающая среда

Информация:

Тип работы: контрольная работа. Добавлен: 18.10.2012. Сдан: 2012. Страниц: 6. Уникальность по antiplagiat.ru: < 30%

Описание (план):


?2
 
Содержание
1. Энергетика и окружающая среда. Традиционные и альтернативные источники энергии. Пути решения энергетических проблем
2. Лесные ресурсы: назначение, экологические проблемы, пути их решения
3. Анализ влияния азота и оксидов на атмосферу
Список литературы

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1. Энергетика и окружающая среда. Традиционные и альтернативные источники энергии. Пути решения энергетических проблем
Энергетика является определяющей и для экономики, и для экологии. От нее в решающей мере зависит экономический потенциал государств и благосостояние людей. Она же оказывает наиболее сильное воздействие на окружающую среду, экосистемы и биосферу в целом. Самые острые экологические проблемы (изменение климата, кислотные осадки, всеобщее загрязнение среды и другие) прямо или косвенно связаны с производством, либо с использованием энергии. Энергетике принадлежит первенство не только в химическом, но и в других видах загрязнения: тепловом, аэрозольном, электромагнитном, радиоактивном. Поэтому от решения энергетических проблем зависит возможность решения основных экологических проблем. Энергетика - это та отрасль производства, которая развивается невиданно быстрыми темпами. Если численность населения в условиях современного демографического взрыва удваивается за 40-50 лет, то в производстве и потреблении энергии это происходит через каждые 12-15 лет. При таком соотношении темпов роста населения и энергетики, энерговооруженность лавинообразно увеличивается не только в суммарном выражении, но и в расчете на душу населения.
В настоящее время энергетические потребности обеспечиваются в основном за счет трех видов энергоресурсов: органического топлива, воды и атомного ядра. Энергия воды и атомная энергия используются человеком после превращения ее в электрическую  энергию. В то же время значительное количество энергии, заключенной в органическом топливе, используется в виде тепловой, и только часть ее превращается в электрическую. Однако и в том и в другом случае высвобождение энергии из органического топлива связано с его сжиганием, а, следовательно, и с поступлением продуктов горения в окружающую среду.
За счет сжигания топлива (включая дрова и другие биоресурсы) в настоящее время производится около 90% энергии. Доля тепловых источников уменьшается до 80-85% в производстве электроэнергии. При этом в промышленно развитых странах нефть и нефтепродукты используются в основном для обеспечения нужд транспорта. Для угля характерна противоположная закономерность: при 22% в общем энергобалансе он является основным в получении электроэнергии (52%). В Китае доля угля в получении электроэнергии близка к 75%, в то же время в России преобладающим источником получения электроэнергии является природный газ (около 40%), а на долю угля приходится только 18% получаемой энергии, доля нефти не превышает 10%.[1]
В мировом масштабе гидроресурсы обеспечивают получение около 5-6% электроэнергии (в России 20,5%), атомная энергетика дает 17-18% электроэнергии. В России ее доля близка к 12%, а в ряде стран она является преобладающей в энергетическом балансе (Франция - 74%, Бельгия -61%, Швеция - 45%).
Сжигание топлива - не только основной источник энергии, но и важнейший поставщик в среду загрязняющих веществ. Тепловые электростанции в наибольшей степени «ответственны» за усиливающийся парниковый эффект и выпадение кислотных осадков. Они, вместе с транспортом, поставляют в атмосферу основную долю техногенного углерода (в основном в виде СО), около 50% двуокиси серы, 35% - окислов азота и около 35% пыли. Имеются данные, что тепловые электростанции в 2-4 раза сильнее загрязняют среду радиоактивными веществами, чем АЭС такой же мощности.
В выбросах ТЭС содержится значительное количество металлов и их соединений. При пересчете на смертельные дозы в годовых выбросах ТЭС мощностью 1 млн. кВт содержится алюминия и его соединений свыше 100 млн. доз, железа-400 млн. доз, магния -1,5 млн. доз. Летальный эффект этих загрязнителей не проявляется только потому, что они попадают в организмы в незначительных количествах. Это, однако, не исключает их отрицательного влияния через воду, почвы и другие звенья экосистем.
Можно считать, что тепловая энергетика оказывает отрицательное влияние практически на все элементы среды, а также на человека, другие организмы и их сообщества.
Вместе с тем влияние энергетики на среду и ее обитателей в большей мере зависит от вида используемых энергоносителей (топлива). Наиболее чистым топливом является природный газ, далее следует нефть (мазут), каменные угли, бурые угли, сланцы, торф.
Хотя в настоящее время значительная доля электроэнергии производится за счет относительно чистых видов топлива (газ, нефть), однако закономерной является тенденция уменьшения их доли. По имеющимся прогнозам, эти энергоносители потеряют свое ведущее значение уже в первой четверти XXI столетия. Здесь уместно вспомнить высказывание Д. И. Менделеева о недопустимости использования нефти как топлива: «нефть не топливо - топить можно и ассигнациями». Не исключена вероятность существенного увеличения в мировом энергобалансе использования угля. По имеющимся расчетам, запасы углей таковы, что они могут обеспечивать мировые потребности в энергии в течение 200-300 лет. Возможная добыча углей, с учетом разведанных и прогнозных запасов, оценивается более чем в 7 триллионов тонн. При этом более 1/3 мировых запасов углей находится на территории России. Поэтому закономерно ожидать увеличения доли углей или продуктов их переработки (например, газа) в получении энергии, а следовательно, и в загрязнении среды. Угли содержат от 0,2 до десятков процентов серы в основном в виде пирита, сульфата закисного железа и гипса. Имеющиеся способы улавливания серы при сжигании топлива далеко не всегда используются из-за сложности и дороговизны. Поэтому значительное количество ее поступает и, по-видимому, будет поступать в ближайшей перспективе в окружающую среду. Серьезные экологические проблемы связаны с твердыми отходами ТЭС - золой и шлаками. Хотя зола в основной массе улавливается различными фильтрами, все же в атмосферу в виде выбросов ТЭС ежегодно поступает около 250 млн. т. мелкодисперсных аэрозолей. Последние способны заметно изменять баланс солнечной радиации у земной поверхности. Они же являются ядрами конденсации для паров воды и формирования осадков, а попадая в органы дыхания человека и других организмов, вызывают различные респираторные заболевания.
Выбросы ТЭС являются существенным источником такого сильного канцерогенного вещества, как бензопирен. С его действием связано увеличение онкологических заболеваний. В выбросах угольных ТЭС содержатся также окислы кремния и алюминия. Эти абразивные материалы способны разрушать легочную ткань и вызывать такое заболевание, как силикоз, которым раньше болели шахтеры. Сейчас случаи заболевания силикозом регистрируются у детей, проживающих вблизи угольных ТЭС.[2]
Серьезную проблему вблизи ТЭС представляет складирование золы и шлаков. Для этого требуются значительные территории, которые долгое время не используются, а также являются очагами накопления тяжелых металлов и повышенной радиоактивности.
ТЭС - существенный источник подогретых вод, которые используются здесь как охлаждающий агент. Эти воды нередко попадают в реки и другие водоемы, обусловливая их тепловое загрязнение и сопутствующиеему цепные природные реакции (размножение водорослей, потерю кислорода, гибель гидробионтов, превращение типично водных экосистем в болотные и т. п.).
Теперь рассмотрим экологические проблемы гидроэнергетики.
Одно из важнейших воздействий гидроэнергетики связано с отчуждением значительных площадей плодородных (пойменных) земель под водохранилища. В России, где за счет использования гидроресурсов производится не более 20% электрической энергии, при строительстве ГЭС затоплено не менее 6 млн. га земель. На их месте уничтожены естественные экосистемы.
Значительные площади земель вблизи водохранилищ испытывают подтопление в результате повышения уровня грунтовых вод. Эти земли, как правило, переходят в категорию заболоченных. В равнинных условиях подтопленные земли могут составлять 10% и более от затопленных. Уничтожение земель и свойственных им экосистем происходит также в результате их разрушения водой (абразии) при формировании береговой линии. Абразионные процессы обычно продолжаются десятилетиями, имеют следствием переработку больших масс почвогрунтов, загрязнение вод, заиление водохранилищ.
Таким образом, со строительством водохранилищ связано резкое нарушение гидрологического режима рек, свойственных им экосистем и видового состава гидробионтов. Так, Волга практически на всем протяжении (от истоков до Волгограда) превращена в непрерывную систему водохранилищ.
На территории России расположено 9 АЭС, включающих 29 реакторов. Из них 22 реактора приходится на наиболее населенную европейскую часть страны. 11 реакторов относится к типу РБМК. На Чернобыльской АЭС произошло разрушение реактора этого типа. Много реакторов (по количеству больше, чем АЭС) установлено на подводных лодках, ледоколах и даже на космических объектах.
В процессе ядерных реакций выгорает лишь 0,5-1,5% ядерного топлива. Ядерный реактор мощностью 1000 МВт за год работы дает около 60 т радиоактивных отходов. Часть их подвергается переработке, а основная масса требует захоронения. Технология захоронения довольно сложна и дорогостояща. Отработанное топливо обычно перегружается в бассейны выдержки, где за несколько лет существенно снижается радиоактивность и тепловыделение. Захоронение обычно проводится на глубинах не менее 500-600 м в шурфах. Последние располагаются друг от друга на таком расстоянии, чтобы исключалась возможность атомных реакций.
Неизбежный результат работы АЭС - тепловое загрязнение вод. На единицу получаемой энергии здесь оно в 2-2,5 раза больше, чем на ТЭС, где значительно больше тепла отводится в атмосферу. Выработка 1 млн. кВт электроэнергии на ТЭС дает 1,5 км3подогретых вод, на АЭС такой же мощности объем подогретых вод достигает 3-3,5 км3.[3]
В целом можно назвать следующие воздействия АЭС на среду:
- разрушение экосистем и их элементов (почв, грунтов, водоносных структур и т. п.) в местах добычи руд (особенно при открытом способе);
- изъятие земель под строительство самих АЭС. Особенно значительные территории отчуждаются под строительство сооружений для подачи, отвода и охлаждения подогретых вод. Для электростанции мощностью 1000 МВт требуется пруд-охладитель площадью около 800-900 га. Пруды могут заменяться гигантскими градирнями с диаметром у основания 100-120 м и высотой, равной 40-этажному зданию;
- изъятие значительных объемов вод из различных источников и сброс подогретых вод. Если эти воды попадают в реки и другие источники, в них наблюдается потеря кислорода, увеличивается вероятность цветения, возрастают явления теплового стресса у гидробионтов;
- не исключено радиоактивное загрязнение атмосферы, вод и почв в процессе добычи и транспортировки сырья, а также при работе АЭС, складировании и переработке отходов, их захоронениях.
Мы рассмотрели традиционные источники энергии, теперь рассмотрим традиционные.
Итак, отбросив в сторону тепловую энергетику, от которой необходимо полностью отказаться, и атомную энергетику, небольшую долю которой (особенно на первое время) все же придется оставить в мировом энергобалансе, обратимся теперь к альтернативной энергетике, основанной на использовании возобновляемых источников энергии. К ним относятся уже существующие источники энергии, использующие энергию Солнца, ветра, приливов и отливов, морских волн, внутреннее тепло планеты.
Основные причины, указывающие на важность скорейшего перехода к АИЭ:
- Глобально-экологический: сегодня общеизвестен и доказан факт пагубного влияния на окружающую среду традиционных энергодобывающих технологий (в т.ч. ядерных и термоядерных), их применение неизбежно ведет к катастрофическому изменению климата уже в первых десятилетиях XXI веке.
- Политический: та страна, которая первой в полной мере освоит альтернативную энергетику, способна претендовать на мировое первенство и фактически диктовать цены на топливные ресурсы;
- Экономический: переход на альтернативные технологии в энергетике позволит сохранить топливные ресурсы страны для переработки в химической и других отраслях промышленности. Кроме того, стоимость энергии, производимой многими альтернативными источниками, уже сегодня ниже стоимости энергии из традиционных источников, да и сроки окупаемости строительства альтернативных электростанций существенно короче. Цены на альтернативную энергию снижаются, на традиционную - постоянно растут;
- Социальный: численность и плотность населения постоянно растут. При этом трудно найти районы строительства АЭС, ГРЭС, где производство энергии было бы рентабельно и безопасно для окружающей среды. Общеизвестны факты роста онкологических и других тяжелых заболеваний в районах расположения АЭС, крупных ГРЭС, предприятий топливно-энергетического комплекса, хорошо известен вред, наносимый гигантскими равнинными ГЭС, - всё это увеличивает социальную напряженность.
- Эволюционно-исторический: в связи с ограниченностью топливных ресурсов на Земле, а также экспоненциальным нарастанием катастрофических изменений в атмосфере и биосфере планеты существующая традиционная энергетика представляется тупиковой; для эволюционного развития общества необходимо немедленно начать постепенный переход на альтернативные источники энергии.[4]
Несомненно, что в ближайшей перспективе тепловая энергетика будет оставаться преобладающей в энергетическом балансе мира и отдельных стран. Велика вероятность увеличения доли углей и других видов менее чистого топлива в получении энергии. В этой связи рассмотрим некоторые пути и способы их использования, позволяющие существенно уменьшать отрицательное воздействие на среду. Эти способы базируются в основном на совершенствовании технологий подготовки топлива и улавливания вредных отходов. В их числе можно назвать следующие.
1. Использование и совершенствование очистных устройств. В настоящее время на многих ТЭС улавливаются в основном твердые выбросы с помощью различного вида фильтров. Наиболее агрессивный загрязнитель - сернистый ангидрид на многих ТЭС не улавливается или улавливается в ограниченном количестве. В то же время имеются ТЭС (США, Япония), на которых производится практически полная очистка от данного загрязнителя, а также от окислов азота и других вредных полютантов. Для этого используются специальные десульфурационные (для улавливания диоксида и триоксида серы) и денитрификационные (для улавливания окислов азота) установки. Наиболее широко улавливание окислов серы и азота осуществляется посредством пропускания дымовых газов через раствор аммиака. Конечными продуктами такого процесса являются аммиачная селитра, используемая как минеральное удобрение, или раствор сульфита натрия (сырье для химической промышленности). Такими установками улавливается до 96% окислов серы и более 80% оксидов азота.
2. Уменьшение поступления соединений серы в атмосферу посредством предварительного обессеривания (десульфурации) углей и других видов топлива (нефть, газ, горючие сланцы) химическими или физическими методами. Этими методами удается извлечь из топлива от 50 до 70% серы до момента его сжигания.
3. Большие и реальные возможности уменьшения или стабилизации поступления загрязнений в среду связаны с экономией электроэнергии. Особенно велики такие возможности для России за счет снижения энергоемкости получаемых изделий.
4. Не менее значимы возможности экономии энергии в быту и на производстве за счет совершенствования изоляционных свойств зданий. Реальную экономию энергии дает замена ламп накаливания с КПД около 5% флуоресцентными, КПД которых в несколько раз выше.
5. Заметно повышается также КПД топлива при его использовании вместо ТЭС на ТЭЦ. В последнем случае объекты получения энергии приближаются к местам ее потребления и тем самым уменьшаются потери, связанные с передачей на расстояние. Наряду с электроэнергией на ТЭЦ используется тепло, которое улавливается охлаждающими агентами. При этом заметно сокращается вероятность теплового загрязнения водной среды. Наиболее экономично получение энергии на небольших установках типа ТЭЦ (когенирование) непосредственно в зданиях. В этом случае потери тепловой и электрической энергии снижаются до минимума. Такие способы в отдельных странах находят все большее применение.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. Лесные ресурсы: назначение, экологические проблемы, пути их решения
Из всех типов растительного покрова планеты и всех категорий естественных ресурсов самыми ценными являются лесные. По современным исследованиям суммарные запасы растительной массы в лесах составляют 82% от всей растительной массы Земли или примерно 1960 млрд. тонн, а общий запас древесины в лесах - более 350 млрд. м.
Леса – национальное богатство народа, источник получения древесины и других видов ценного сырья, а также стабилизирующий компонент биосферы. Они имеют очень большое эстетическое и рекреационное (восстановительное) значение. Рациональное использование и сохранение лесов в настоящее время приобретает большое значение для европейской части России и Урала, где сосредоточены сравнительно небольшие лесные ресурсы и основные производственные мощности промышленных предприятий, а также большинство населения страны. Для упорядочения пользования лесами государственного значения и предупреждения истощения древесных запасов в малолесных районах леса разделены на три группы. К первой группе относятся леса, выполняющие преимущественно следующие функции: водоохранные, защитные (противоэрозионные), санитарно-гигиенические и оздоровительные (городские леса, леса зеленых зон вокруг городов).
Ко второй группе относятся леса в районах с высокой плотностью населения и развитой сетью транспортных путей, имеющие защитное и ограниченно эксплуатационное значение, а также леса с недостаточными лесосырьевыми ресурсами, для сохранения защитных функций которых, непрерывности и неистощимости пользования им требуется более строгий режим лесопользования.[5]
К третьей группе относятся леса многолесных районов, имеющие преимущественно эксплуатационное значение и предназначенные для непрерывного удовлетворения потребностей народного хозяйства в древесине без ущерба защитных свойств этих лесов. В лесах третьей группы ведущее место занимает использование целевых ресурсов (в первую очередь древесины). В свете современных вопросов охраны окружающей среды и рационального использования лесных ресурсов большое значение приобретает освоение лесов третьей группы, совершенствование лесоэксплуатации и переработки древесины, дальнейшее повышение продуктивности насаждений, эффективное использование побочных продуктов леса. Создание крупных лесопромышленных комплексов на Северо-Западе и в Восточной Сибири, на Дальнем Востоке позволило вовлечь в эксплуатацию крупные лесные массивы с перестойными и спелыми насаждениями, выдвинув задачу перед лесным хозяйством и лесной промышленностью замены старых лесов новыми. Большое значение приобретает комплексное использование древесного сырья. Его основой является производство технологической цепы, которое позволяет применять древесину, а также отходы лесозаготовок и лесопиления в качестве исходного сырья для целлюлозно-бумажной промышленности и производства древесных плит.
Быстро растет и рекреационное значение лесов, расположенных в местах с развитой промышленностью, около больших городов. Рекреационная ценность лесов порой превосходит стоимость получаемой от них древесины. При скоплении в лесах отдыхающих возникает рекреационная нагрузка. Это может оказаться опасным для продолжения естественного развития и нормального существования лесных массивов, биогеоценозов. Если участок леса сильно поврежден вытаптыванием почвы, его нужно исключить из пользования на 3-5 лет и более. Нужно тщательно выполнять все правила противопожарной охраны, запрещать прогулки, отдых и сбор грибов и ягод в молодых лесонасаждениях.
С развитием урбанизации огромное значение приобретают зеленые насаждения в городах. Зеленые насаждения – древесно-кустарниковая, цветочная и травянистая растительность, элементы благоустройства озелененных территорий – являются эффективным средством экологической защиты города, они повышают комфортность, эстетичность городской среды, могут на 20% и более уменьшить силу городского шума, так как служат преградой для распространения звуковых волн. Зеленые насаждения общего пользования не могут быть приватизированы или сданы в аренду и являются общегородской муниципальной собственностью без права изменять назначение этих территорий и отчуждений части их под другие цели. Недопустимы любые формы хозяйственной деятельности, наносящие невосполнимый вред зеленому фонду города.
Мировые лесные ресурсы характеризуются двумя важными показателями: размерами лесной площади и запасами древесины на корню. Лесные ресурсы относятся к возобновимым. Но поскольку леса сводятся под пашни, строительство, древесину используют в качестве дров, как сырье для деревообрабатывающей и других видов промышленности (производство бумаги, мебели и пр.), проблема сокращения лесных ресурсов и обезлесивания территорий стоит достаточно остро. Для рационального использования лесных ресурсов необходимо комплексно перерабатывать сырье, не вырубать леса в объеме, превышающем их прирост, проводить лесовосстановительные работы.
Леса мира распространены неравномерно. Они образуют два приблизительно равных по площади и запасам древесины лесных пояса - северный и южный. Северный - в зоне умеренного и отчасти субтропического климата. Самые многолесные страны северного пояса - Россия, США, Канада, Финляндия, Швеция. Южный пояс - в зоне тропического и экваториального климатов. Основные лесные районы южного пояса - Амазония, бассейн Конго, Юго-Восточная Азия, страны - Конго, Бразилия, Венесуэла.
Итак, лесные ресурсы (леса) называют «легкими» планеты, они играют огромную роль в жизни всего человечества. Они восстанавливают кислород в атмосфере, сохраняют грунтовые воды, предотвращают разрушение почвы. Сведение тропических лесов Амазонии приводит к нарушению «легких» планеты. Сохранение лесов необходимо, в том числе и для здоровья человечества.
3. Анализ влияния азота и оксидов на атмосферу
Сейчас общепризнанно, что наиболее сильно загрязняет воздух промышленное  производство. Источники загрязнения - теплоэлектростанции, которые вместе с дымом выбрасывают в воздух сернистый и углекислый газ; металлургические предприятия,  особенно цветной металлургии, которые выбрасывают  в  воздух  оксиды  азота,  сероводород,  хлор, фтор,  аммиак, соединения фосфора, частицы и соединения ртути  и мышьяка;  химические и цементные заводы. Вредные газы попадают в  воздух в результате сжигания топлива для нужд промышленности, отопления жилищ,  работы транспорта, сжигания и переработки бытовых и промышленных отходов.
По данным ученых, ежегодно в мире в резуль­тате деятельности человека в атмосферу поступает 25,5 млрд т оксидов углерода, 190 млн т оксидов серы, 65 млн т оксидов азота, 1,4 млн т хлорфторуглеродов (фреонов), органические соединения свинца, углеводороды, в том числе канцерогенные (вызывающие заболевание раком). [6]
Наиболее    распространенные загрязнители атмосферы посту­пают в нее в основном в двух видах: либо в виде взвешенных частиц (аэрозолей), либо в виде газов. По массе львиную долю – 80-90 процентов - всех выбросов в атмосферу из-за деятельности человека составляют газообраз­ные выбросы. Существуют 3 основных источника образования газообразных  загрязнений: сжигание горючих материалов, промышленные производственные процессы и природные источники.
Рассмотрим основные вредные   примеси   антропогенного  происхождения.
Оксид углерода.  Получается при неполном сгорании углеродистых веществ.  В воздух он попадает в результате сжигания твердых отходов, с выхлопными газами и выбросами промышленных предприятий. Ежегодно этого газа поступает в атмосферу не менее 1250 млн. т.  Оксид углерода является соединением,  активно реагирующим  с составными частями атмосферы и способствует повышению температуры на планете, и созданию парникового эффекта.
Сернистый ангидрид. Выделяется в процессе сгорания серосодержащего топлива или  переработки  сернистых  руд (до 170 млн. т. в год).  Часть  соединений  серы выделяется при горении органических остатков в горнорудных отвалах. Только в США общее количество  выброшенного в атмосферу сернистого ангидрида составило 65 %  от общемирового выброса.
Серный  ангидрид. Образуется  при окислении сернистого ангидрида. Конечным продуктом реакции является  аэрозоль или раствор серной  кислоты  в дождевой воде,  который подкисляет почву, обостряет заболевания дыхательных путей человека.  Выпадение аэрозоля серной кислоты из дымовых факелов химических предприятий отмечается при низкой облачности и высокой  влажности воздуха. Листовые пластинки растений, произрастающих на расстоянии менее  11 км.  От таких предприятий,  обычно  бывают густо усеяны мелкими некротическими пятнами, образовавшихся в местах оседания капель серной  кислоты.  Пирометаллургические предприятия цветной и черной металлургии, а также ТЭС ежегодно выбрасывают в атмосферу десятки миллионов тонн серного ангидрида.
Сероводород и сероуглерод.  Поступают в атмосферу  раздельно        или  вместе с другими соединениями серы.  Основными источниками выброса являются предприятия  по  изготовлению  искусственного волокна,  сахара, коксохимические, нефтеперерабатывающие, а также нефтепромыслы.  В атмосфере при взаимодействии с другими загрязнителями подвергаются медленному окислению до серного ангидрида.
Оксиды  азота.  Основными  источниками выброса являются предприятия, производящие азотные удобрения,  азотную кислоту и нитраты,  анилиновые красители,  нитросоединения, вискозный шелк, целлулоид.  Количество оксидов азота, поступающих в атмосферу, составляет 20 млн. т. в  год.
Соединения фтора.  Источниками  загрязнения  являются предприятия по производству алюминия,  эмалей, стекла, керамики, стали, фосфорных удобрений. Фторосодержащие вещества поступают в  атмосферу в виде газообразных соединений - фтороводорода или пыли фторида натрия         и кальция. Соединения характеризуются токсическим  эффектом.  Производные  фтора  являются сильными инсектицидами.
Соединения  хлора. Поступают в атмосферу от химических предприятий, производящих  соляную  кислоту,  хлоросодержащие пестициды, органические красители, гидролизный спирт, хлорную известь, соду.  В атмосфере встречаются как примесь  молекулы хлора  и паров соляной кислоты. Токсичность хлора определяется видом соединений и их концентрацией.  В металлургической промышленности при  выплавке  чугуна  и  при  переработке его на сталь происходит выброс в атмосферу различных тяжелых  металлов и ядовитых газов. Так, в расчете на 1 т. передельного чугуна выделяется кроме 12,7 кг. сернистого газа и 14,5 кг пылевых частиц,  определяющих количество соединений мышьяка, фосфора, сурьмы,  свинца, паров ртути и редких металлов, смоляных веществ и цианистого водорода.
Помимо газообразных загрязняющих веществ, в атмо­сферу поступает большое количество твердых частиц. Это пыль, копоть и сажа. Большую опасность таит загрязнение природной среды тяжелыми металлами. Свинец, кадмий, ртуть, медь, никель, цинк, хром, ванадий стали практичес­ки постоянными компонентами воздуха промышленных центров.
Аэрозоли - это твердые или жидкие частицы,  находящиеся во взвешенном состоянии в воздухе.  Твердые компоненты аэрозолей  в ряде случаев особенно опасны для организмов,  а у людей вызывают специфические  заболевания.  В  атмосфере  аэрозольные  загрязнения воспринимаются в виде дыма, тумана, мглы или дымки. Значительная  часть  аэрозолей образуется в атмосфере при  взаимодействии твердых и жидких частиц между собой или с  водяным паром. Средний размер аэрозольных частиц составляет 1-5 мкм. В атмосферу Земли ежегодно поступает около 1 куб. км пылевидных частиц искусственного  происхождения.  Большое  количество пылевых частиц образуется также в ходе  производственной деятельности людей.
Основными источниками искусственных аэрозольных загрязнения воздуха являются ТЭС,  которые потребляют  уголь высокой зольности, обогатительные фабрики,  металлургические, цементные, магнезитовые и сажевые заводы.  Аэрозольные  частицы  от этих источников  отличаются большим разнообразием химического   состава. Чаще  всего  в  их составе обнаруживаются соединения   кремния, кальция и углерода,  реже - оксиды металлов: железа,   магния, марганца, цинка, меди, никеля, свинца, сурьмы, висмута, селена,  мышьяка,  бериллия, кадмия, хрома, кобальта, молибдена, а также асбест.
Постоянными источниками аэрозольного загрязнения  являются  промышленные отвалы  -  искусственные  насыпи из переотложенного  материала, преимущественно вскрышных  пород,  образуемых  при   добыче полезных  ископаемых или же из отходов предприятий перерабатывающей промышленности,  ТЭС.
Источником пыли и ядовитых газов служат массовые взрывные работы. Так,  в результате одного среднего по массе взрыва (250-300 тонн взрывчатых  веществ) в атмосферу выбрасывается около 2 тыс. куб. м. условного оксида углерода и более 150 т. пыли.
Производство  цемента  и   других строительных материалов также является источником загрязнения атмосферы пылью.  Основные технологические  процессы этих производств  -  измельчение и химическая обработка полуфабрикатов и получаемых продуктов в потоках горячих газов всегда сопровождается выбросами пыли и других вредных веществ в атмосферу.
Основными загрязнителями атмосферы на сегодняшний день являются окись углерода и сернистый газ.
Но, конечно, нельзя забывать и о фреонах, или хлорфторуглеводородах. Именно их большинство ученых считают причиной образования так называемых озоновых дыр в атмосфере. Фреоны широко используются в производстве и в быту в качестве хладореагентов, пенообразователей, растворителей, а также в аэрозольных упаковках. А именно с понижением содержания озона в верхних слоях атмосферы медики связывают рост количества раковых заболеваний кожи. Известно, что атмосферный озон образуется в результате сложных фотохимических реакций под воздействием ультрафиолетовых излучений Солнца. Хотя его содержание невелико, его значение для биосферы огромно. Озон, поглощая ультрафиолетовое излучение, предохраняет все живое на земле от гибели. Фреоны же, попадая в атмосферу, под действием солнечного излучения распадаются на ряд соединений, из которых окись хлора наиболее интенсивно разрушает озон. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Список литературы
1.      Болбас М.М. Основы промышленной экологии. – М.: изд-во Высшая школа, 2005. – 287 с.
2.      Дементьев Б. А. Ядерные энергетические реакторы: Учебник для ВУЗов – М.: Энергоатомиздат, 2003. – 280 с.
3.      Данилов - Данильян В.И. Экология, охрана природы и экологическая безопасность»: учебник - М.: МНЭПУ, 2006. – 320 с.
4.      Никитина А.Т. Экология, охрана природы, экологическая безопасность. – М.: изд-во МНЕПУ, 2000.- 345 с.
5.      Протасов В.Ф. Экология, здоровье и охрана окружающей среды в России: учебник - М.: Финансы и статистика, 2007.- 255 с.


[1] Болбас М.М. Основы промышленной экологии. – М.: изд-во Высшая школа, 2005. – 134 с.
[2] Протасов В.Ф. Экология, здоровье и охрана окружающей среды в России: учебник -  М.: Финансы и статистика, 2007.- 59 с.
[3] Болбас М.М. Основы промышленной экологии. – М.: изд-во Высшая школа, 2005. – 184 с.
[4] Протасов В.Ф. Экология, здоровье и охрана окружающей среды в России: учебник -  М.: Финансы и статистика, 2007.- 124 с.
[5] Данилов - Данильян В.И. Экология, охрана природы и экологическая безопасность»: учебник -  М.: МНЭПУ, 2006. – 201 с.

[6] Данилов - Данильян В.И. Экология, охрана природы и экологическая безопасность»: учебник -  М.: МНЭПУ, 2006. – 294 с.



и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.