На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


реферат Анатомия зрения

Информация:

Тип работы: реферат. Добавлен: 20.10.2012. Сдан: 2012. Страниц: 7. Уникальность по antiplagiat.ru: < 30%

Описание (план):


?Министерство науки и образования РФ
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования
«Омский государственный педагогический университет»
(ФГБОУ ВПО ОмГПУ)
Факультет специальной педагогики и психологии
Кафедра специальной психологии
 
 
 
Реферат

Анатомия органа зрения
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                        
\.
 
Омск – 2011
 
 
 
 
Содержание
1)Строение глаза
    - наружная - белочная оболочка (склера
    - средняя оболочка - сосудистая.
     - третья, внутренняя оболочка глаза - сетчатка
 
2)Палочки и колбочки
 
3)Зрительный нерв
 
4) Строение внутреннего ядра
   -стекловидная тело
    -хрусталик
    -камеры глаза
 
5) Проводящие пути зрительного анализатора
 
6)Корковые центры анализатора, их локализация в коре головного мозга
 
7)Автоматические особенности органов зрения у детей
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Зрительную систему условно можно разделить на три функционирующих системы - глазное яблоко или глаз - восприятие и переработка световой информации, отправка в центральный отдел ,проводящие пути - проведение сигнала в кору и зрительная кора головного мозга - обработка зрительной информации, формирование и сравнение полученных  образов.
Строение глаза
Человеческий глаз - это сложная динамическая оптико-электрическая система, основной целью которой является восприятие, первоначальная обработка и передача зрительной информации в центральные отделы зрительной коры головного мозга. Поэтому все структуры глаза призваны обеспечить выполнение его функции. С боков и сзади глаз прочно защищен костями глазницы. Стенки глаза образованы тремя оболочками.
Наружная - белочная оболочка (склера) - служит прочным чехлом для внутри расположенных структур. Передний отдел склеры виден при осмотре, покрытконъюнктивой и заканчивается прозрачной и немного выпуклой спереди - роговицей. Конъюнктива покрывает также внутреннюю поверхность век.
Средняя оболочка - сосудистая. Она обеспечивает полноценное питание практически всех структур глаза. За роговицей сосудистая оболочка, образует радужку, которая имеет индивидуальную для каждого рисунок и окраску. В центре радужки расположено отверстие - зрачок, который служит диафрагмой при прохождении света внутрь глаза. За радужкой располагается фокусирующая линза - хрусталик, который вследствие изменения своей кривизны позволяет рассматривать близко и далеко расположенные предметы. Внутреннее пространство глаза заполнено желеобразной массой - стекловидным телом, создающим плотный каркас глаза.
Третья, внутренняя оболочка глаза - сетчатка, самая сложная по устройству и выполняемым функциям оболочка. Она тонкой пленкой выстилает стенки полости глаза и, будучи придавленной стекловидным телом и внутриглазной жидкостью к сосудистой оболочке, имеет жесткое крепление только у места выхода из глаза зрительного нерва и по так называемой зубчатой линии недалеко от ресничного тела. Сетчатка состоит из различных видов клеток, главные из которых палочки, колбочки и нервные (ганглиозные) клетки. Палочки и колбочки
Палочки активны только при крайне низкой освещенности (ночное зрение) и не имеют практического значения при восприятии цветных изображений; они более сконцентрированы по периферии обзорного поля. Колбочки ответственны за восприятие цвета и они сконцентрированы в ямке (fovea). Существует три типа колбочек, которые воспринимают длинные, средние и короткие длины волн светового излучения. Каждый тип колбочек обладает собственной спектральной чувствительностью (sensitivity function). Приблизительно считается, что первый тип воспринимает световые волны с длиной от 400 до 500 нм (условно "синюю" составляющую цвета), второй - от 500 до 600 нм (условно "зеленую" составляющую) и третий - от 600 до 700 нм (условно "красную" составляющую). Цвет ощущается в зависимости от того, волны какой длины и интенсивности присутствуют в свете.
Глаз наиболее чувствителен к зеленым лучам, наименее - к синим. Экспериментально установлено, что среди излучений равной мощности наибольшее световое ощущение вызывает монохроматическое желто-зеленое излучение с длиной волны 555 нм. Относительная спектральная световая эффективность (обозначаемая буквой v) этого излучения принята за единицу. Спектральная чувствительность глаза зависит от внешней освещенности. В сумерках максимум спектральной световой эффективности сдвигается в сторону синих излучений, что вызвано разной спектральной чувствительностью палочек и колбочек. В темноте синий цвет оказывает большее влияние, чем красный, при равной мощности излучения, а на свету - наоборот.
Разные люди воспринимают один и тот же цвет по-разному, поскольку число рецепторов, отвечающих за восприятие определенных длин волн, у каждого человека различно. Восприятие цветов изменяется с возрастом, зависит от остроты зрения, от настроения и других факторов. Однако, такие различия относятся в основном к тонким оттенкам цвета, поэтому в целом можно утверждать, что большинство людей воспринимает основные цвета одинаково. Исключением являются не различающие цвета дальтоники, среди которых около 10% мужского населения и около 1% женского. Это обычно связано с тем, что у них не функционируют красные колбочки (длинные волны) или зеленые (средние волны).
 
Нервные клетки, центральные отростки которых образуют зрительный нерв, связаны с несколькими палочками. Только каждой колбочке соответствует своя нервная клетка, что подчеркивает их значимость.
Зрительный нерв содержит волокна нервных клеток и сосуды, питающие глаз. В месте его выхода из глаза зрительные клетки отсутствуют, поэтому из этого участка (слепое пятно) зрительная информация не поступает.
Волокна зрительного нерва, частично перекрещиваясь, проходят в затылочную область, в зрительную кору, где происходят сложнейшие процессы анализа полученной информации с формированием зрительного образа (той картинки, которую видит человек). Для наиболее комфортного функционирования глаз снабжен дополнительными образованиями - мышцами (осуществляют его движения), веками (защищают его спереди от вредных физических и химических воздействий), слезной железой (смазывает роговицу снаружи и удаляет с нее механические и инфекционные агенты), пара и ретробульбарной клетчаткой (выполняет функцию амортизатора).
Все выше сказанное говорит о сложнейшем и многоуровневом устройстве органа зрения. Разумеется, что какое-либо нарушение этой высокоточной работы приводит к изменению получаемого в итоге зрительного образа.
 
Строение внутреннего ядра
Внутреннее ядро глаза состоит из прозрачных светопреломляющих сред: стекловидного тела, хрусталика, предназначенных для построения изображения на сетчатке, и водянистой влаги, наполняющей глазные камеры и служащей для питания бессосудистых образований глаза.
А. Стекловидное тeло, corpus vitreum, выполняет полость глазного яблока кнутри от сетчатой оболочки и представляет совершенно прозрачную массу, похожую на желе, лежащую позади хрусталика. Благодаря вдавлению со стороны последнего на передней поверхности стекловидного тела образуется ямка - fossa hyaloidea, края которой соединяются с капсулой хрусталика посредством специальной связки.
Б. Xpусталик, lens, является весьма существенной светопреломляющей средой глазного яблока. Он совершенно прозрачен и имеет вид чечевицы или двояковыпуклого стекла. Центральные точки передней и задней поверхностей носят название полюсов (polus anterior et posterior), а периферический край хрусталика, где обе поверхности переходят друг в друга, называется экватором. Ось хрусталика, соединяющая оба полюса, равна 3,7 мм при взгляде вдаль и 4,4 мм при аккомодации, когда хрусталик делается более выпуклым. Экваториальный диаметр 9 мм. Хрусталик плоскостью своего экватора стоит под прямым углом к оптической оси, прилегая передней поверхностью к радужке, а задней - к стекловидному телу.
Хрусталик заключен в тонкую, также совершенно прозрачную бесструктурную капсулу, capsula lentis, и удерживается в своем положении особой связкой - ресничным пояском, zonula ciliaris, которая слагается из множества тонких волокон, идущих от капсулы хрусталика к ресничному телу, где они залегают преимущественно между ресничными отростками. Mежду волокнами связки находятся выполненные жидкостью пространства пояска, spatia zonularia, сообщающиеся с камерами глаза.
Благодаря эластичности своей капсулы хрусталик легко меняет свою кривизну в зависимости от того, смотрим ли мы вдаль или вблизь. Это явление называется аккомодацией. В первом случае хрусталик вследствие натяжения ресничного пояска несколько уплощен; во втором, когда глаз должен быть установлен на близкое расстояние, ресничный поясок под влиянием сокращения m.ciliaris ослабляется вместе с капсулой хрусталика и последней становится более выпуклым. Благодаря этому лучи, идущие от близко расположенного предмета, преломляются хрусталиком сильнее и могут соединиться на сетчатке. Хрусталик, так же как и стекловидное тело, сосудов не имеет.
 
В. Камеры глаза.Пространство, находящееся между передней поверхностью радужки и задней стороной роговицы, называется передней камерой глазного яблока, camera anterior bulbi. Передняя и задняя стенки камеры сходятся вместе по ее окружности в углу, образуемом местом перехода роговицы в склеру, с одной стороны, и цилиарным краем радужки - с другой. Угол этот, angulus iridocornealis, закругляется сетью перекладин.
Между перекладинами находятся щелевидные пространства. Angulus iridocornealis имеет важное физиологическое значение в смысле циркуляции жидкости в камере, которая через посредство указанных пространств опорожняется в находящийся по соседству в толще склеры венозный синус.
Позади радужной оболочки находится более узкая задняя камера глаза, camera posterior bulbi, в состав которой входят и пространства между волокнами ресничного пояска; сзади она ограничивается хрусталиком, а сбоку - corpus ciliare. Через зрачок задняя камера сообщается с передней. Обе камеры глаза наполнены прозрачной жидкостью - водянистой влагой, humor aquosus, отток которой совершается в венозный синус склеры..
Проводящие пути зрительного анализатора
- это совокупность нервных волокон, по которым проводятся импульсы от сетчатки к подкорковым и корковыразительным центрам. Рецепторами, воспринимающими световые раздражения, являются специализированные палочковидные и колбочковидные фоторецепторные клетки, передающие нервный импульс биполярным нейронам сетчатки, которые контактируют с ганглиозными нейронами. Отростки последних сходятся к диску зрительного нерва и, объединяясь, образуют зрительный нерв, который выходит из глазницы через зрительный канал и в полости черепа образует зрительный перекрест. Перекрест является неполным, так как перекрещиваются только волокна, идущие от медиальных половин сетчатки.
.
Зрительный путь позади перекреста образует зрительные тракты, каждый из которых содержит волокна от латеральной половины сетчатки своей и медиальной половины сетчатки противоположной стороны. Волокна зрительного тракта заканчиваются в латеральном коленчатом теле и подушке таламуса, а также в верхних холмиках четверохолмия. Аксоны клеток латерального коленчатого тела и подушки таламуса проходят через внутреннюю капсулу и, образуя зрительную лучистость, заканчиваются в коре затылочной доли полушария по краям шпорной борозды. Верхние холмики связаны со спинным мозгом и добавочным ядром глазодвигательного нерва, через которое осуществляются зрачковый рефлекс и аккомодация.
 
Корковые центры анализатора, их локализация в коре большого мозга.
Корковые анализаторы - особые структуры различных областей коры, особенности которых объясняет архитектоника коры головного мозга - учение об особенностях морфологической структуры различных областей коры. Различают цитоархитектонику, изучающую особенности клеток коры и миелоархитектонику, изучающую особенности различных участков коры в отношении мякотных нервных волокон.
Кора покрывает всю поверхность больших полушарий. Ее структурными элементами являются нервные клетки с отходящими от них отростками - аксонами и дендритами - и клетки нейроглии.
 
В коре полушарий большого мозга человека насчитывают около 12-18 млрд. нервных клеток. Из них 8 млрд. составляют крупные и средних размеров клетки третьего, пятого и шестого слоев, около 5 млрд. приходится на мелкие клетки различных слоев
 
Основная масса клеток коры состоит из элементов трех родов:
-пирамидных клеток
-веретенообразных клеток
-звездчатых клеток
 
Полагают, что пирамидные и веретенообразные клетки с длинными аксонами представляют преимущественно эфферентные системы коры, а звездчатые - преимущественно афферентные. Считают, что клеток нейроглии в головном мозге в 10 раз больше, чем ганглиозных (нервных) клеток, т. е. около 100-130 млрд. Толщина коры варьирует от 1,5 до 4 мм. Общая поверхность обоих полушарий коры у взрослого человека составляет от 1450 до 1700 см2
Особенностью структуры коры больших полушарий является расположение нервных клеток в шесть слоев, лежащих друг над другом.
 
первый слой - lamina zonalis, зональный (краевой) слой или молекулярный - беден нервными клетками и образован в основном сплетением нервных волокон
второй - lamina granularis externa, наружный зернистый слой - называется так из-за наличия в нем густо расположенных мелких клеток, диаметром 4-8 мк,имеющих на микроскопических препаратах форму круглых, треугольных и многоугольных зерен
третий - lamina pyramidalis, пирамидальный слой - имеет большую толщину, чем первые два слоя. В нем содержатся пирамидные клетки разной величины
четвертый - lamina dranularis interna, внутренний зернистый слой - подобно второму слою, он состоит из мелких клеток. Этот слой в некоторых участках коры больших полушарий взрослого организма может отсутствовать; так, например, его нет в моторной области коры
пятый - lamina gigantopyramidalis, слой больших пирамид (гигантские клетки Беца) - от верхней части этих клеток отходит толстый отросток - дендрит, многократно ветвящийся в поверхностных слоях коры. Другой длинный отросток - аксон - больших пирамидных меток уходит в белое вещество и направляется к подкорковым ядрам или к спинному мозгу.
шестой - lamina multiformis, полиморфный слой (мультиформный) - состоит из клеток треугольной формы и веретенообразных
По функциональному признаку нейроны коры больших полушарий могут быть подразделены на три основные группы.
 
Сенсорные нейроны коры больших полушарий, так называемые звездчатые нейроны, которые в особенно большом количестве находятся в III и IV слоях сенсорных областей коры. На них оканчиваются аксоны третьих нейронов специфических афферентных путей. Эти клетки обеспечивают восприятие афферентных импульсов, приходящих в кору больших полушарий из ядер зрительных бугров.
Моторные (эффекторны) нейроны - клетки, посылающие импульсы в лежащие ниже отделы мозга - к подкорковым ядрам, стволу мозга и спинному мозгу. Это большие пирамидные нейроны, которые впервые описал В. А. Бец в 1874 г. Они сконцентрированы в основном в V слое моторной зоны коры. В осуществлении эффекторной функции коры принимают участие и некоторые веретенообразные клетки.
Контактные, или промежуточные, нейроны - клетки, осуществляющие связь между различными нейронами одной и той же или различных зон коры. К их числу относятся мелкие и средние пирамидные и веретенообразные клетки
.
Миелоархитектонически кора головного мозга человека также делится в основном на шесть слоев, соответствующих указанным клеточным слоям. Миелоархитектонические слои еще в большей степени, чем слои цитоархитектонические, распадаются на подслои и крайне изменчивы в различных участках коры.
 
В сложной структуре нервных волокон коры больших полушарий различают
горизонтальные волокна, соединяющие различные участки коры, и
радиальные волокна, связывающие серое и белое вещество.
Приведнное описание клеточной структуры коры является в известной мере схематическим, поскольку имеются значительные вариации в степени развития указанных слоев в различных областях коры.
Эволюционный подход позволил создать более детальную, современную классификацию полей коры больших полушарий, которая была предложена Институтом мозга Академии медицинских наук СССР (рис.).
 
Постцентральная область (поля 3/4, 3, 1, 2, 43). [показать]
Прецентральная область (поля 4 и 6). [показать]
Лобная область поля (8, 9, 10, 11, 12, 44, 45, 46, 47 и 32). [показать]
Островковая область (поля 13 и 14 и перипалео
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.