Здесь можно найти учебные материалы, которые помогут вам в написании курсовых работ, дипломов, контрольных работ и рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение оригинальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение оригинальности любого файла в формате MS Word. После такого повышения оригинальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, РУКОНТЕКСТ, etxt.ru. Программа «StudentHelp» работает по уникальной технологии так, что на внешний вид, файл с повышенной оригинальностью не отличается от исходного.

Результат поиска


Наименование:


реферат Понятие и значение биосферы

Информация:

Тип работы: реферат. Добавлен: 23.10.2012. Год: 2011. Страниц: 6. Уникальность по antiplagiat.ru: < 30%

Описание (план):


 
РЕФЕРАТ
«Понятие  и значение биосферы» 
 
 
 

 

Содержание 
 

 

     Введение 

     Жизнь, как особое, очень сложное явление  природы оказывает на окружающий мир самое разнообразное воздействие. Существуя в виде различных проявлений, жизнь («живая природа») не только производит продукты своей жизнедеятельности, но и коренным образом преображает природу. В естествознании изучение жизни как целостного феномена в его тесной связи с окружающей природой получило название учения о биосфере.
     Биосфера (от био… и сфера), область активной жизни, охватывающая нижнюю часть атмосферы, гидросферу и верхнюю часть литосферы. В биосфере живые организмы (живое вещество) и среда их обитания органически связаны и взаимодействуют друг с другом, образуя целостную динамическую систему. Термин «Биосфера» введен в 1875 году Зюссом. Учение о биосфере, как об активной оболочке земли, в которой совокупная деятельность живых организмов (в том числе человека) проявляется как геохимический фактор планетарного масштаба и значения, создано В. И. Вернадским в 1926 году.
     К биосфере относится все, что живет, дышит, растет и питается (кроме человека, который выделился из животного мира). Поэтому рассмотрим проблемы, относящиеся непосредственно к миру дикой природы.
     Целью контрольной работы является изучение понятия биосферы и ее структуры, особенностей фнукционирования.
     При написании контрольной работы были поставлены задачи:
    Раскрыть понятие биосферы.
    Рассказать о структуре биосферы.
    Рассказать о компонентах биосферы.
    Раскрыть особенности функционирования биосферы.
     5. Раскрыть взаимодействие биосферы и человека.
 

     1. Понятие биосферы

 
     Впервые термин «биосфера» использовал в 1875 г. австрийский геолог Э. Зюссом. Под биосферой понимается вся совокупность всех живых организмов вместе со средой их обитания, в которую входят: вода, нижняя часть атмосферы и верхняя часть земной коры, населенная микроорганизмами.
     В своей работе «Очерки геохимии» Вернадский пишет: «Живое вещество более или менее непрерывно распространено на земной поверхности, оно образует на ней тонкий, но сплошной покров, в котором концентрирована свободная химическая энергия, выработанная им из энергии Солнца. Этот слой есть земная оболочка, которую знаменитый австрийский геолог Э.Зюсс назад назвал биосферой и которая представляет одну из самых характерных черт организованности нашей планеты. Только в ней сосредоточена та особая форма нахождения химических элементов, которую мы назвали живым веществом». 
     В книге «Химическое строение биосферы Земли и её окружения» он пишет по этому поводу: «Биосфера и её приближённый синоним - Лик Земли - оба понятия, введённые Э.Зюссом, но сейчас коренным образом изменённые ходом дальнейшего исследования, ярко определяют основные черты поверхности нашей планеты: близость к Космосу, не повторяющуюся на нашей Земле, и существование исключительно на ней живого вещества. «Лик Земли» - картина Земли, если смотреть на неё из просторов Космоса».
     Наиболее  распространённым, и вместе с тем  наиболее однобоким, является представление  о биосфере только как о современной  живой плёнке (условно - оболочке) планеты, т.е. о достаточно автономной совокупности всех организмов (животных, растений, бактерий), населяющих поверхность Земли и её гидросферу и проникающих в той или иной мере в приповерхностные зоны атмосферы и литосферы. Такая биосфера сложным образом соотносится с тремя другими геосферами Земли, что только усиливает иллюзию её автономности. Биосфера Вернадского имеет неизмеримо большую глубину и характеризуется большим количеством основополагающих параметров.
     Определяя биосферу, Вернадский пишет: «Э.Зюсс (1831 - 1914) и геологи того времени могли смотреть и на проявление жизни и на Лик Земли, как на независимые друг от друга явления. Сейчас для нас ясно, что Лик Земли не является результатом «случайных явлений», а отвечает определённой резко ограниченной геологической земной оболочке - биосфере - одной из многих других, имеющих определённую структуру, характерную для земных планет».
     В работе «Об условиях появления жизни на Земле», вышедшей в 1931 г. В.И. Вернадский ставит вопрос о первом появлении жизни, издавна волновавший философов. Однако он пытается разрешить этот вопрос не как философ, а как учёный. При этом, как считает Вернадский, можно научно подойти к решению этой проблемы, но не во всей её полноте. «Это необходимо учитывать и резко определять область, которая подлежит в данное время научному ведению. Этой областью не будет решение вопроса о механизме зарождения или появления жизни на нашей планете, но ею может являться определение условий, в которых такое появление или зарождение единственно возможно». Здесь же даётся определение научной постановки проблемы: «Под научной постановкой проблемы я подразумеваю такую постановку, которая сводит всю проблему, или отдельные, логически непреклонно с ней связанные следствия к форме, допускающей точную проверку научным опытом или научным наблюдением».
     В.И. Вернадский подчеркивает два важнейших, с геологической точки зрения, положения: во-первых, планетный, геологически закономерный характер жизни, и, во-вторых, теснейшую связь всех геологических  процессов в биосфере с деятельностью живого вещества.
     Таким образом, понимание жизни как  планетного явления приводит к представлениям о прямой зависимости существования  биосферы от условий, созданных геологическими (в широком смысле слова) процессами.
     Таким образом, Вернадский сводит проблему зарождения жизни к проблеме возникновения биосферы, т.е. к определению тех условий, при которых возможно осуществление биогеохимических функций биосферы. Он считает, что такие условия могли возникнуть после выделения Луны из Земли и образования Тихого океана. В.И. Вернадский пишет: «Первое появление жизни при создании биосферы должно было произойти не в виде одного какого-нибудь вида организма, а в виде их совокупности, отвечающей геохимическим функциям жизни. Должны были сразу появиться биоценозы». При этом он допускает в качестве механизма возникновения жизни как абиогенез (зарождение вне живого), так и проникновение живого вещества извне, из космоса. Абиогенез, как считает Вернадский, несмотря на то, что мы не наблюдаем сейчас его проявлений, мог существовать в определённых условиях до появления биосферы.
     Интересно, что в работе «Начало и вечность жизни», вышедшей в 1922 г. В.И. Вернадский анализирует различные механизмы возникновения жизни и приходит к выводу, что жизнь могла быть вечной, не иметь начала: «Указание на логическую необходимость признания начала для эволюционного процесса имеет скорее философский, чем научный интерес. В конце концов, мы так же мало можем говорить о начале, как и о конце эволюционного процесса». Причём одной из причин всеобщего признания в науке необходимости начала жизни
     По  мнению В.И. Вернадского, земная кора - это область былых биосфер. Биосфера существовала на протяжении геологической  истории от криптозоя до наших  дней и была широко проникнута живым веществом.
     Биосфера  Вернадского неразрывно связана  с его концепцией пространства-времени, т.е. она трехмерна и геоисторична. Сведение её к современной жизнедеятельной  плёнке планеты не просто обедняет понятие биосферы, а лишает её самой  основы - бесконечной длительности эволюции, сложности неравномерного исторического развития, его непрерывности, направленности и необратимости. Нынешний срез биосферы, какой бы сложной и экологически дробной она нам ни представлялась, в своём вхождении в ландшафты Земли, в литосферу, в гидросферу (вплоть до человека в космосе) - только вершина древа - гигантского пути, идущего из геологического прошлого, без знания которого вся ослепительная красота современной мозаики жизни безродна и слепа.
     Вернадский  неоднократно подчёркивает, что ни один живой организм (и в том числе человек) в свободном состоянии на Земле не находится. Все организмы неразрывно и непрерывно связаны, – прежде всего, питанием и дыханием - с окружающей их материально-энергетической средой. «В гуще, в интенсивности и в сложности современной жизни человек практически забывает, что он сам и всё человечество, от которого он не может быть отделён, неразрывно связаны с биосферой - с определённой частью планеты, на которой они живут».
     Биосферная  концепция Вернадского лишена узкой биологичности и поэтому не может быть автоматически вписана только в сферу биологических наук. Это широкое междисциплинарное направление в науках о Земле и жизни, находящееся к тому же во все возрастающей связи с глобальной социологией и общественными науками. В этом и состоит огромное значение современных комплексных биосферных знаний в науке и в глобальных биосферных прогнозах наших дней, ставших особенно острыми в условиях неконтролируемой технократической деятельности людей.
 

     2.Структура биосферы

     Биосфера  включает в себя: живое вещество, образованное совокупностью организмов; биогенное вещество, которое создается  в процессе жизнедеятельности организмов (газы атмосферы, каменный уголь, нефть, торф, известняки и др.); косное вещество, которое формируется без участия живых организмов; биокосное вещество, представляющее собой совместный результат жизнедеятельности организмов и небиологических процессов (например, почвы).
     Косное  вещество биосферы. Границы биосферы определяются факторами земной среды, которые делают невозможным существование живых организмов. Верхняя граница проходит примерно на высоте 20 км от поверхности планеты и ограничена слоем озона, который задерживает губительные для жизни коротковолновую часть ультрафиолетового излучения Солнца. Таким образом, живые организмы могут существовать в тропосфере и нижних слоях стратосферы. В гидросфере земной коры организмы проникают на всю глубину Мирового океана - до 10-11 км. В литосфере жизнь встречается на глубине 3,5-7,5 км, что обусловлено температурой земных недр и условием проникновения воды в жидком состоянии[3].
     Атмосфера. Газовая оболочка состоит в основном из азота и кислорода. В небольших количествах в ней содержится диоксид углерода (0,03%) и озон. Состояние атмосферы оказывает большое влияние на физические, химические и биологические процессы на поверхности Земли и в водной среде. Для биологических процессов наибольшее значение имеют: кислород, используемый для дыхания и минерализации мертвого органического вещества, диоксид углерода, участвующий в фотосинтезе, и озон, экранирующий земную поверхность от жесткого ультрафиолетового излучения. Азот, диоксид углерода, пары воды образовались в значительной мере благодаря вулканической деятельности, а кислород - в результате фотосинтеза[3].
     Гидросфера. Вода - важнейший компонент биосферы и один из необходимых факторов существования живых организмов. Основная ее часть (95%) находится в Мировом океане, который занимает около 70% поверхности земного шара и содержит 1300 млн. км3. Поверхностные воды (озера, реки) включают всего 0,182 млн. км3, а количество воды в живых организмах составляет всего 0,001 млн. км3. Значительные запасы воды (24 млн. км3) содержат ледники. Большое значение имеют газы, растворенные в воде: кислород и диоксид углерода. Их количество широко варьирует от температуры и присутствия живых организмов. Диоксида углерода, содержащегося в воде, в 60 раз больше, чем в атмосфере. Гидросфера формировалась в связи с развитием литосферы, которая в течение геологической истории Земли выделяла большое количество водяного пара[3].
     Литосфера. Основная масса организмов, обитающих в пределах литосферы, находится в почвенном слое, глубина которого не превышает нескольких метров. Почва включает минеральные вещества, образующиеся при разрушении горных пород, и органические вещества - продукты жизнедеятельности организмов[3].
     Живые организмы (живое вещество). Хотя границы биосферы довольно узки, живые организмы в их пределах распределены очень неравномерно. На большой высоте и в глубинах гидросферы и литосферы организмы встречаются относительно редко. Жизнь сосредоточена главным образом на поверхности Земли, в почве и в приповерхностном слое океана. Общую массу живых организмов оценивают в 2,43х1012т. Биомасса организмов, обитающих на суше, на 99,2% представлена зелеными растениями и 0,8% - животными и микроорганизмами. Напротив, в океане на долю растений приходится 6,3%, а на долю животных и микроорганизмов - 93,7% всей биомассы. Жизнь сосредоточена главным образом на суше. Суммарная биомасса океана составляет всего 0,03х10 12 т, или 0,13% биомассы всех существ, обитающих на Земле.
     В распределении живых организмов по видовому составу наблюдается  важная закономерность. Из общего числа  видов 21% приходится на растения, но их вклад в общую биомассу составляет 99%. Среди животных 96% видов - беспозвоночные и только 4% - позвоночные, из которых десятая часть - млекопитающие. Масса живого вещества составляет всего 0,01-0,02% от косного вещества биосферы, однако она играет ведущую роль в геохимических процессах. Вещества и энергию, необходимую для обмена веществ, организмы черпают из окружающей среды. Ограниченные количества живой материи воссоздаются, преобразуются и разлагаются. Ежегодно, благодаря жизнедеятельности растений и животных, воспроизводится около 10% биомассы[3].
 

     3. Компоненты биосферы

 
     Главные компоненты биосферы - живые организмы  и среда их обитания - непрерывно взаимодействуют между собой  и находятся в тесном, органическом единстве, образуя целостную динамическую систему. Биосфера как глобальная суперсистема в свою очередь состоит из ряда подсистем.
     Живые системы очень многообразны. За все  время эволюции жизни на Земле  существовало колоссальное количество различных видов живых организмов (всего около 500 млн.). В настоящее время насчитывается около 1,2 млн. видов животных и 0,5 млн. видов растений. Минеральных же видов неживой материи насчитывается лишь около 10 тыс. видов.
     Отдельные живые организмы не существуют изолированно. В процессе своей жизнедеятельности  они соединяются в различные системы (сообщества), например, в популяции. В ходе эволюции образуется другой, качественно новый уровень живых систем, так называемые биоценозы - совокупность растений, животных и микроорганизмов в локальной среде обитания.
     Эволюция  жизни постепенно приводит к росту и углублению дифференциации внутри биосферы. В совокупности с окружающей средой обитания, обмениваясь с ней веществом и энергией, биоценозы образуют новые системы - биогеоценозы или, как их еще называют, экосистемы. Они могут быть разного масштаба: море, озеро, лес, роща и т.д. Биогеоценоз представляет собой естественную модель биосферы в миниатюре, включающую в себя все звенья биотического круговорота: от зеленых растений, создающих органическое вещество, до их потребителей, в итоге превращающих его вновь в минеральные элементы. Иначе говоря, биогеоценоз является элементарной ячейкой биосферы. Таким образом, в совокупности все живые организмы и экосистемы образуют суперсистему - биосферу.
     Говоря  о принципах существования биосферы, В.И. Вернадский прежде всего уточнял понятие и способы функционирования живого вещества. Живой организм является неотъемлемой частью земной коры и изменяющим ее агентом, а живое вещество - это совокупность организмов, участвующих в геохимических процессах. Организмы берут из окружающей среды химические элементы, строящие их тела, и возвращают их после смерти и в процессе жизни в туже самую среду. Тем самым и жизнь, и косное вещество находится в непрерывном тесном взаимодействии, в круговороте химических элементов. При этом живое вещество служит основным системообразующим фактором и связывает биосферу в единое целое.
     Обладая значительно большей активностью, чем неорганическая природа, живые  организмы стремятся к постоянному  совершенствованию и размножению  соответствующих систем, включая биоценозы. Последние в свою очередь неизбежно входят во взаимодействия между собой, что, в конечном счете, уравновешивает живые системы различного уровня. В результате достигается динамическая гармония всей суперсистемы жизни - биосферы.
     Современное естествознание в ходе изучения биоценозов вводит новое понятие – «коэволюция», означающее взаимное приспособление видов. Именно коэволюция обеспечивает условия  сосуществования и повышения  устойчивости биоценоза как системы. Коэволюция является новой перспективной идеей естественных и социальных наук. Ведь в приспособлении (как в природе, так и в обществе) решающую роль играет не борьба за существование, а взаимопомощь, согласованность и «сотрудничество»  различных видов, в том числе и не связанных между собой генетическими узами.
     Развитие  биосферы происходит путем углубления взаимодействия живых организмов и  среды. В ходе эволюции постепенно происходит процесс планетарной   интеграции, т.е. усиления и развития взаимозависимости и взаимодействия живого и неживого.

     4.Функционирование  биосферы. Биокруговорот

 
     Несмотря  на специфичность и самостоятельность  отдельных оболочек Земли как  составляющих биосферы, суммарная деятельность населяющих эти оболочки живых организмов интегрируется на уровне биосферы как целостной функциональной системы. Выше уже показана связь гидросферы, атмосферы и почвы. На границах сред жизни регистрируются интенсивные процессы обмена органическим веществом, водой, минеральными солями и т. д. Природные границы можно рассматривать как биологически активные зоны: здесь часто обитает больше видов, через эти границы трансформируются большие потоки энергии. Важную роль в обмене веществ между атмосферой, почвой и гидросферой играет речной сток. Прибрежные мелководья морей получают огромное количество органических веществ от обитающих на суше или скапливающихся на пролете птиц. В устьях рек и в регионах мангровых зарослей обитает почти 2/3 видов промысловых рыб.
     Формы функциональных связей наземного и  водного биоциклов весьма многообразны; по существу, лишь на уровне биосферы в целом можно судить о сложной системе обмена веществ и потоков энергии между неживой и живой материей. Биосфера как функциональная экосистема планетарного масштаба в значительной степени есть результат этих процессов.
     Важная  функция биосферы — устойчивое поддержание  жизни — основывается на непрерывном  круговороте веществ, связанном  с направленными потоками энергии. Хотя биологический круговорот может  быть осуществлен не только на уровне биоциклов, но и конкретных экосистем, в реальных условиях обособленных круговоротов нет: на уровне биосферы эти процессы объединяются в единую систему глобальной функции живого вещества. В этой системе не только полностью завершаются отдельные биогенные циклы, но и реализуется тесная взаимосвязь с абиотическими процессами формирования и переформирования горных пород, становления и поддержания специфических свойств гидросферы и атмосферы, образования почв и поддержания их плодородия и т. п. В этом едином цикле функции живого вещества существенно шире, нежели осуществление круговорота отдельных элементов.
     Живые организмы и надорганизменные системы  активно участвуют в формировании особенностей климата, типов почв, вариантов  ландшафта, характера циркуляции вод  и во многих других процессах, на первый взгляд не относящихся к категории биогенных. В конечном итоге многообразные формы жизни в их глобальной взаимосвязи определяют уникальные свойства биосферы как самоподдерживающейся системы, гомеостаз которой запрограммирован на всех уровнях организации живой материи. Функциональная теснейшая связь биологических систем разных уровней превращает дискретные формы жизни в интегрированную глобальную систему — биосферу.
     Специфическое свойство жизни — обмен веществ  со средой. Любой организм должен получать из внешней среды определенные вещества как истопники энергии и материал для построения собственного тела. Продукты метаболизма, уже непригодные для дальнейшего использования, выводятся наружу. Таким образом, каждый организм или множество одинаковых организмов (популяция, вид) в процессе своей жизнедеятельности ухудшают условия своего обитания. Возможность обратного процесса — поддержания жизненных условий или даже их улучшения, — о чем говорилось выше, определяется тем, что биосферу населяют разные организмы (виды) с разным типом обмена веществ.
     Физиологическая разнокачественность живых организмов представляет собой фундаментальное  условие устойчивого существования жизни как планетарного явления. Теоретически можно представить возникновение жизни в одной форме, но в этом случае запрограммирована конечность жизни как явления: видоспецифичность обмена веществ неизбежно ведет к исчерпанию ресурсов и “загрязнению” среды продуктами жизнедеятельности, которые невозможно использовать вторично.
     В простейшем виде такой комплиментарный  набор качественных форм жизни представлен  продуцентами, консументами и редуцентами, совместная деятельность которых обеспечивает извлечение определенных веществ из внешней среды, их трансформацию на разных уровнях трофических цепей и минерализацию органического вещества до составляющих, доступных для очередного включения в круговорот'.
     Основные  элементы, мигрирующие по цепям биологического круговорота,— углерод, водород, кислород, азот, калий, кальций, кремний, фосфор и др.
     Совместная  деятельность различных живых организмов определяет закономерный круговорот отдельных  элементов и химических соединений, включающий введение их в состав живых  клеток, преобразования химических веществ в процессах метаболизма, выведение в окружающую среду, и деструкцию органических веществ, в результате которой высвобождаются минеральные вещества, вновь включающиеся в биологические циклы. Процессы круговорота происходят в конкретных экосистемах, но в полном виде биогеохимические циклы реализуются лишь на уровне биосферы в целом. Ниже рассматриваются наиболее значимые элементы круговорота веществ. Круговорот углерода существует в природе во многих формах, в том числе в составе органических соединений. Неорганическое вещество, лежащее в основе биогенного круговорота этого элемента, диоксид углерода (или углекислый газ, С02). В природе С02 входит в Состав атмосферы, а также находится в растворенном состоянии в гидросфере. Включение углерода в состав органических веществ происходит в процессе фотосинтеза, в результате которого на основе СО2 и Н2О образуются сахара. В дальнейшем другие процессы биосинтеза преобразуют эти углеводы в более сложные (крахмал, гликоген), а также в протеиды, липиды и др. Все эти соединения не только формируют ткани фотосинтезирующих организмов но и служат источником органических веществ для животных и незеленых растений.В процессе дыхания все организмы окисляют сложные органические вещества; конечный продукт этого процесса, С02, выводится во внешнюю среду, где вновь может вовлекаться в процесс фотосинтеза.
     Углеродсодержащие органические соединения тканей живых  организмов после их смерти подвергаются биологическому разложению организмами-редуцентами, в результате чего углерод в форме углекислоты вновь поступает в круговорот. Этот процесс составляет сущность так называемого почвенного дыхания. При определенных условиях в почве разложение накапливающихся мертвых остатков идет замедленным темпом — через образование сапрофагами (животными и микроорганизмами) гумуса, минерализация которого воздействием грибов и бактерий может идти с различной, в том числе и с низкой, скоростью. В некоторых случаях цепь разложения органического вещества бывает неполной. В частности, деятельность сапрофагов может подавляться недостатком кислорода или повышенной кислотностью. В этом случае органические остатки накапливаются в виде торфа; углерод не высвобождается и круговорот приостанавливается. Аналогичные ситуации возникали и в прошлые геологические эпохи, о чем свидетельствуют отложения каменного угля и нефти.
     В гидросфере приостановка круговорота  углерода связана с включением СО2 в состав СаСО3 в виде известняков, мела, кораллов. В этом случае углерод выключается из круговорота на целые геологические эпохи. Лишь поднятие органогенных пород ней уровнем моря приводит к возобновлению круговорота через вьпцелачивание известняков атмосферными осадками, а также биогенным путем — действием лишайников, корней растений. Круговорот азота. Главный источник азота органических соединений — молекулярный азот в составе атмосферы. Переход его в доступные живым организмам соединения может осуществляться разными путями. Так, электрические разряды при грозах синтезируют из азота и кислорода воздуха оксиды азота, которые с дождевыми водами попадают в почву в форме селитры или азотной кислоты. Имеет место и фотохимическая фиксация азота.
     Более важной формой усвоения азота является деятельность азотфиксирующих микроорганизмов, синтезирующих сложные протеиды. Отмирая, они обогащают почву органическим азотом, который быстро минерализуется. Таким путем в почву ежегодно поступает около 25 кг азота на 1 га (для сравнения — путем фиксации азота разрядами молний — 4 — 10 кг/га).
     Наиболее  эффективная фиксация азота осуществляется бактериями, формирующими симбиотические связи с бобовыми растениями. Образуемый ими органический азот диффундирует в ризосферу, а также включается в наземные органы растения-хозяина. Таким путем в наземных и подземных органах растений (например, клевера или люцерны) на 1 га накапливается за год 150—400 кг азота.
     Существуют  азотфиксирующио микроорганизмы, образующие симбиоз и с другими растениями. В водной среде и на очень влажной  почве непосредственную фиксацию атмосферного азота осуществляют цианобактерии (способные также к фотосинтезу). Во всех этих случаях азот попадает в растения в форме нитратов. Эти соединения через корни и проводящие пути доставляются в листья, где используются для синтеза протеинов; последние служат основой азотного питания животных.
     Экскреты  и мертвые организмы составляют базу цепей питания организмов-сапрофагов, разлагающих органические соединения с постепенным превращением органических азотсодержащих веществ в неорганические. Конечным звеном этой редукционной цепи оказываются аммонифицирующие организмы, образующие аммиак NH4, который затем может войти в цикл нитрификации: окисляют его в нитриты, a  окисляют нитриты в нитраты. Таким образом, цикл азота может быть продолжен.
     В то же время происходит постоянное возвращение азота в атмосферу действием бактерий-денитрификаторов, которые разлагают нитраты до Ni. Эти бактерии активны в почвах, богатых азотом и углеродом. Благодаря их деятельности ежегодно с 1 га почвы улетучивается до 50—60 кг азота.
     Азот  может выключаться из круговорота путем аккумуляции в глубоководных осадках океана. В известной мере это компенсируется выделением молекулярного Мг в составе вулканических газов.
     Круговорот  воды Вода - необходимое вещество в  составе любых живых организмов. Основная масса воды на планете сосредоточена в гидросфере. Испарение с поверхности водоемов представляет источник атмосферной влага; конденсация ее вызывает осадки, с которыми, в конце концов, вода возвращается в океан. Этот процесс составляет большой круговорот воды на поверхности Земного шара.
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.