На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


реферат Понятие и значение биосферы

Информация:

Тип работы: реферат. Добавлен: 23.10.2012. Сдан: 2011. Страниц: 6. Уникальность по antiplagiat.ru: < 30%

Описание (план):


 
РЕФЕРАТ
«Понятие  и значение биосферы» 
 
 
 

 

Содержание 
 

 

     Введение 

     Жизнь, как особое, очень сложное явление  природы оказывает на окружающий мир самое разнообразное воздействие. Существуя в виде различных проявлений, жизнь («живая природа») не только производит продукты своей жизнедеятельности, но и коренным образом преображает природу. В естествознании изучение жизни как целостного феномена в его тесной связи с окружающей природой получило название учения о биосфере.
     Биосфера (от био… и сфера), область активной жизни, охватывающая нижнюю часть атмосферы, гидросферу и верхнюю часть литосферы. В биосфере живые организмы (живое вещество) и среда их обитания органически связаны и взаимодействуют друг с другом, образуя целостную динамическую систему. Термин «Биосфера» введен в 1875 году Зюссом. Учение о биосфере, как об активной оболочке земли, в которой совокупная деятельность живых организмов (в том числе человека) проявляется как геохимический фактор планетарного масштаба и значения, создано В. И. Вернадским в 1926 году.
     К биосфере относится все, что живет, дышит, растет и питается (кроме человека, который выделился из животного мира). Поэтому рассмотрим проблемы, относящиеся непосредственно к миру дикой природы.
     Целью контрольной работы является изучение понятия биосферы и ее структуры, особенностей фнукционирования.
     При написании контрольной работы были поставлены задачи:
    Раскрыть понятие биосферы.
    Рассказать о структуре биосферы.
    Рассказать о компонентах биосферы.
    Раскрыть особенности функционирования биосферы.
     5. Раскрыть взаимодействие биосферы и человека.
 

     1. Понятие биосферы

 
     Впервые термин «биосфера» использовал в 1875 г. австрийский геолог Э. Зюссом. Под биосферой понимается вся совокупность всех живых организмов вместе со средой их обитания, в которую входят: вода, нижняя часть атмосферы и верхняя часть земной коры, населенная микроорганизмами.
     В своей работе «Очерки геохимии» Вернадский пишет: «Живое вещество более или менее непрерывно распространено на земной поверхности, оно образует на ней тонкий, но сплошной покров, в котором концентрирована свободная химическая энергия, выработанная им из энергии Солнца. Этот слой есть земная оболочка, которую знаменитый австрийский геолог Э.Зюсс назад назвал биосферой и которая представляет одну из самых характерных черт организованности нашей планеты. Только в ней сосредоточена та особая форма нахождения химических элементов, которую мы назвали живым веществом». 
     В книге «Химическое строение биосферы Земли и её окружения» он пишет по этому поводу: «Биосфера и её приближённый синоним - Лик Земли - оба понятия, введённые Э.Зюссом, но сейчас коренным образом изменённые ходом дальнейшего исследования, ярко определяют основные черты поверхности нашей планеты: близость к Космосу, не повторяющуюся на нашей Земле, и существование исключительно на ней живого вещества. «Лик Земли» - картина Земли, если смотреть на неё из просторов Космоса».
     Наиболее  распространённым, и вместе с тем  наиболее однобоким, является представление  о биосфере только как о современной  живой плёнке (условно - оболочке) планеты, т.е. о достаточно автономной совокупности всех организмов (животных, растений, бактерий), населяющих поверхность Земли и её гидросферу и проникающих в той или иной мере в приповерхностные зоны атмосферы и литосферы. Такая биосфера сложным образом соотносится с тремя другими геосферами Земли, что только усиливает иллюзию её автономности. Биосфера Вернадского имеет неизмеримо большую глубину и характеризуется большим количеством основополагающих параметров.
     Определяя биосферу, Вернадский пишет: «Э.Зюсс (1831 - 1914) и геологи того времени могли смотреть и на проявление жизни и на Лик Земли, как на независимые друг от друга явления. Сейчас для нас ясно, что Лик Земли не является результатом «случайных явлений», а отвечает определённой резко ограниченной геологической земной оболочке - биосфере - одной из многих других, имеющих определённую структуру, характерную для земных планет».
     В работе «Об условиях появления жизни на Земле», вышедшей в 1931 г. В.И. Вернадский ставит вопрос о первом появлении жизни, издавна волновавший философов. Однако он пытается разрешить этот вопрос не как философ, а как учёный. При этом, как считает Вернадский, можно научно подойти к решению этой проблемы, но не во всей её полноте. «Это необходимо учитывать и резко определять область, которая подлежит в данное время научному ведению. Этой областью не будет решение вопроса о механизме зарождения или появления жизни на нашей планете, но ею может являться определение условий, в которых такое появление или зарождение единственно возможно». Здесь же даётся определение научной постановки проблемы: «Под научной постановкой проблемы я подразумеваю такую постановку, которая сводит всю проблему, или отдельные, логически непреклонно с ней связанные следствия к форме, допускающей точную проверку научным опытом или научным наблюдением».
     В.И. Вернадский подчеркивает два важнейших, с геологической точки зрения, положения: во-первых, планетный, геологически закономерный характер жизни, и, во-вторых, теснейшую связь всех геологических  процессов в биосфере с деятельностью живого вещества.
     Таким образом, понимание жизни как  планетного явления приводит к представлениям о прямой зависимости существования  биосферы от условий, созданных геологическими (в широком смысле слова) процессами.
     Таким образом, Вернадский сводит проблему зарождения жизни к проблеме возникновения биосферы, т.е. к определению тех условий, при которых возможно осуществление биогеохимических функций биосферы. Он считает, что такие условия могли возникнуть после выделения Луны из Земли и образования Тихого океана. В.И. Вернадский пишет: «Первое появление жизни при создании биосферы должно было произойти не в виде одного какого-нибудь вида организма, а в виде их совокупности, отвечающей геохимическим функциям жизни. Должны были сразу появиться биоценозы». При этом он допускает в качестве механизма возникновения жизни как абиогенез (зарождение вне живого), так и проникновение живого вещества извне, из космоса. Абиогенез, как считает Вернадский, несмотря на то, что мы не наблюдаем сейчас его проявлений, мог существовать в определённых условиях до появления биосферы.
     Интересно, что в работе «Начало и вечность жизни», вышедшей в 1922 г. В.И. Вернадский анализирует различные механизмы возникновения жизни и приходит к выводу, что жизнь могла быть вечной, не иметь начала: «Указание на логическую необходимость признания начала для эволюционного процесса имеет скорее философский, чем научный интерес. В конце концов, мы так же мало можем говорить о начале, как и о конце эволюционного процесса». Причём одной из причин всеобщего признания в науке необходимости начала жизни
     По  мнению В.И. Вернадского, земная кора - это область былых биосфер. Биосфера существовала на протяжении геологической  истории от криптозоя до наших  дней и была широко проникнута живым веществом.
     Биосфера  Вернадского неразрывно связана  с его концепцией пространства-времени, т.е. она трехмерна и геоисторична. Сведение её к современной жизнедеятельной  плёнке планеты не просто обедняет понятие биосферы, а лишает её самой  основы - бесконечной длительности эволюции, сложности неравномерного исторического развития, его непрерывности, направленности и необратимости. Нынешний срез биосферы, какой бы сложной и экологически дробной она нам ни представлялась, в своём вхождении в ландшафты Земли, в литосферу, в гидросферу (вплоть до человека в космосе) - только вершина древа - гигантского пути, идущего из геологического прошлого, без знания которого вся ослепительная красота современной мозаики жизни безродна и слепа.
     Вернадский  неоднократно подчёркивает, что ни один живой организм (и в том числе человек) в свободном состоянии на Земле не находится. Все организмы неразрывно и непрерывно связаны, – прежде всего, питанием и дыханием - с окружающей их материально-энергетической средой. «В гуще, в интенсивности и в сложности современной жизни человек практически забывает, что он сам и всё человечество, от которого он не может быть отделён, неразрывно связаны с биосферой - с определённой частью планеты, на которой они живут».
     Биосферная  концепция Вернадского лишена узкой биологичности и поэтому не может быть автоматически вписана только в сферу биологических наук. Это широкое междисциплинарное направление в науках о Земле и жизни, находящееся к тому же во все возрастающей связи с глобальной социологией и общественными науками. В этом и состоит огромное значение современных комплексных биосферных знаний в науке и в глобальных биосферных прогнозах наших дней, ставших особенно острыми в условиях неконтролируемой технократической деятельности людей.
 

     2.Структура биосферы

     Биосфера  включает в себя: живое вещество, образованное совокупностью организмов; биогенное вещество, которое создается  в процессе жизнедеятельности организмов (газы атмосферы, каменный уголь, нефть, торф, известняки и др.); косное вещество, которое формируется без участия живых организмов; биокосное вещество, представляющее собой совместный результат жизнедеятельности организмов и небиологических процессов (например, почвы).
     Косное  вещество биосферы. Границы биосферы определяются факторами земной среды, которые делают невозможным существование живых организмов. Верхняя граница проходит примерно на высоте 20 км от поверхности планеты и ограничена слоем озона, который задерживает губительные для жизни коротковолновую часть ультрафиолетового излучения Солнца. Таким образом, живые организмы могут существовать в тропосфере и нижних слоях стратосферы. В гидросфере земной коры организмы проникают на всю глубину Мирового океана - до 10-11 км. В литосфере жизнь встречается на глубине 3,5-7,5 км, что обусловлено температурой земных недр и условием проникновения воды в жидком состоянии[3].
     Атмосфера. Газовая оболочка состоит в основном из азота и кислорода. В небольших количествах в ней содержится диоксид углерода (0,03%) и озон. Состояние атмосферы оказывает большое влияние на физические, химические и биологические процессы на поверхности Земли и в водной среде. Для биологических процессов наибольшее значение имеют: кислород, используемый для дыхания и минерализации мертвого органического вещества, диоксид углерода, участвующий в фотосинтезе, и озон, экранирующий земную поверхность от жесткого ультрафиолетового излучения. Азот, диоксид углерода, пары воды образовались в значительной мере благодаря вулканической деятельности, а кислород - в результате фотосинтеза[3].
     Гидросфера. Вода - важнейший компонент биосферы и один из необходимых факторов существования живых организмов. Основная ее часть (95%) находится в Мировом океане, который занимает около 70% поверхности земного шара и содержит 1300 млн. км3. Поверхностные воды (озера, реки) включают всего 0,182 млн. км3, а количество воды в живых организмах составляет всего 0,001 млн. км3. Значительные запасы воды (24 млн. км3) содержат ледники. Большое значение имеют газы, растворенные в воде: кислород и диоксид углерода. Их количество широко варьирует от температуры и присутствия живых организмов. Диоксида углерода, содержащегося в воде, в 60 раз больше, чем в атмосфере. Гидросфера формировалась в связи с развитием литосферы, которая в течение геологической истории Земли выделяла большое количество водяного пара[3].
     Литосфера. Основная масса организмов, обитающих в пределах литосферы, находится в почвенном слое, глубина которого не превышает нескольких метров. Почва включает минеральные вещества, образующиеся при разрушении горных пород, и органические вещества - продукты жизнедеятельности организмов[3].
     Живые организмы (живое вещество). Хотя границы биосферы довольно узки, живые организмы в их пределах распределены очень неравномерно. На большой высоте и в глубинах гидросферы и литосферы организмы встречаются относительно редко. Жизнь сосредоточена главным образом на поверхности Земли, в почве и в приповерхностном слое океана. Общую массу живых организмов оценивают в 2,43х1012т. Биомасса организмов, обитающих на суше, на 99,2% представлена зелеными растениями и 0,8% - животными и микроорганизмами. Напротив, в океане на долю растений приходится 6,3%, а на долю животных и микроорганизмов - 93,7% всей биомассы. Жизнь сосредоточена главным образом на суше. Суммарная биомасса океана составляет всего 0,03х10 12 т, или 0,13% биомассы всех существ, обитающих на Земле.
     В распределении живых организмов по видовому составу наблюдается  важная закономерность. Из общего числа  видов 21% приходится на растения, но их вклад в общую биомассу составляет 99%. Среди животных 96% видов - беспозвоночные и только 4% - позвоночные, из которых десятая часть - млекопитающие. Масса живого вещества составляет всего 0,01-0,02% от косного вещества биосферы, однако она играет ведущую роль в геохимических процессах. Вещества и энергию, необходимую для обмена веществ, организмы черпают из окружающей среды. Ограниченные количества живой материи воссоздаются, преобразуются и разлагаются. Ежегодно, благодаря жизнедеятельности растений и животных, воспроизводится около 10% биомассы[3].
 

     3. Компоненты биосферы

 
     Главные компоненты биосферы - живые организмы  и среда их обитания - непрерывно взаимодействуют между собой  и находятся в тесном, органическом единстве, образуя целостную динамическую систему. Биосфера как глобальная суперсистема в свою очередь состоит из ряда подсистем.
     Живые системы очень многообразны. За все  время эволюции жизни на Земле  существовало колоссальное количество различных видов живых организмов (всего около 500 млн.). В настоящее время насчитывается около 1,2 млн. видов животных и 0,5 млн. видов растений. Минеральных же видов неживой материи насчитывается лишь около 10 тыс. видов.
     Отдельные живые организмы не существуют изолированно. В процессе своей жизнедеятельности  они соединяются в различные системы (сообщества), например, в популяции. В ходе эволюции образуется другой, качественно новый уровень живых систем, так называемые биоценозы - совокупность растений, животных и микроорганизмов в локальной среде обитания.
     Эволюция  жизни постепенно приводит к росту и углублению дифференциации внутри биосферы. В совокупности с окружающей средой обитания, обмениваясь с ней веществом и энергией, биоценозы образуют новые системы - биогеоценозы или, как их еще называют, экосистемы. Они могут быть разного масштаба: море, озеро, лес, роща и т.д. Биогеоценоз представляет собой естественную модель биосферы в миниатюре, включающую в себя все звенья биотического круговорота: от зеленых растений, создающих органическое вещество, до их потребителей, в итоге превращающих его вновь в минеральные элементы. Иначе говоря, биогеоценоз является элементарной ячейкой биосферы. Таким образом, в совокупности все живые организмы и экосистемы образуют суперсистему - биосферу.
     Говоря  о принципах существования биосферы, В.И. Вернадский прежде всего уточнял понятие и способы функционирования живого вещества. Живой организм является неотъемлемой частью земной коры и изменяющим ее агентом, а живое вещество - это совокупность организмов, участвующих в геохимических процессах. Организмы берут из окружающей среды химические элементы, строящие их тела, и возвращают их после смерти и в процессе жизни в туже самую среду. Тем самым и жизнь, и косное вещество находится в непрерывном тесном взаимодействии, в круговороте химических элементов. При этом живое вещество служит основным системообразующим фактором и связывает биосферу в единое целое.
     Обладая значительно большей активностью, чем неорганическая природа, живые  организмы стремятся к постоянному  совершенствованию и размножению  соответствующих систем, включая биоценозы. Последние в свою очередь неизбежно входят во взаимодействия между собой, что, в конечном счете, уравновешивает живые системы различного уровня. В результате достигается динамическая гармония всей суперсистемы жизни - биосферы.
     Современное естествознание в ходе изучения биоценозов вводит новое понятие – «коэволюция», означающее взаимное приспособление видов. Именно коэволюция обеспечивает условия  сосуществования и повышения  устойчивости биоценоза как системы. Коэволюция является новой перспективной идеей естественных и социальных наук. Ведь в приспособлении (как в природе, так и в обществе) решающую роль играет не борьба за существование, а взаимопомощь, согласованность и «сотрудничество»  различных видов, в том числе и не связанных между собой генетическими узами.
     Развитие  биосферы происходит путем углубления взаимодействия живых организмов и  среды. В ходе эволюции постепенно происходит процесс планетарной   интеграции, т.е. усиления и развития взаимозависимости и взаимодействия живого и неживого.

     4.Функционирование  биосферы. Биокруговорот

 
     Несмотря  на специфичность и самостоятельность  отдельных оболочек Земли как  составляющих биосферы, суммарная деятельность населяющих эти оболочки живых организмов интегрируется на уровне биосферы как целостной функциональной системы. Выше уже показана связь гидросферы, атмосферы и почвы. На границах сред жизни регистрируются интенсивные процессы обмена органическим веществом, водой, минеральными солями и т. д. Природные границы можно рассматривать как биологически активные зоны: здесь часто обитает больше видов, через эти границы трансформируются большие потоки энергии. Важную роль в обмене веществ между атмосферой, почвой и гидросферой играет речной сток. Прибрежные мелководья морей получают огромное количество органических веществ от обитающих на суше или скапливающихся на пролете птиц. В устьях рек и в регионах мангровых зарослей обитает почти 2/3 видов промысловых рыб.
     Формы функциональных связей наземного и  водного биоциклов весьма многообразны; по существу, лишь на уровне биосферы в целом можно судить о сложной системе обмена веществ и потоков энергии между неживой и живой материей. Биосфера как функциональная экосистема планетарного масштаба в значительной степени есть результат этих процессов.
     Важная  функция биосферы — устойчивое поддержание  жизни — основывается на непрерывном  круговороте веществ, связанном  с направленными потоками энергии. Хотя биологический круговорот может  быть осуществлен не только на уровне биоциклов, но и конкретных экосистем, в реальных условиях обособленных круговоротов нет: на уровне биосферы эти процессы объединяются в единую систему глобальной функции живого вещества. В этой системе не только полностью завершаются отдельные биогенные циклы, но и реализуется тесная взаимосвязь с абиотическими процессами формирования и переформирования горных пород, становления и поддержания специфических свойств гидросферы и атмосферы, образования почв и поддержания их плодородия и т. п. В этом едином цикле функции живого вещества существенно шире, нежели осуществление круговорота отдельных элементов.
     Живые организмы и надорганизменные системы  активно участвуют в формировании особенностей климата, типов почв, вариантов  ландшафта, характера циркуляции вод  и во многих других процессах, на первый взгляд не относящихся к категории биогенных. В конечном итоге многообразные формы жизни в их глобальной взаимосвязи определяют уникальные свойства биосферы как самоподдерживающейся системы, гомеостаз которой запрограммирован на всех уровнях организации живой материи. Функциональная теснейшая связь биологических систем разных уровней превращает дискретные формы жизни в интегрированную глобальную систему — биосферу.
     Специфическое свойство жизни — обмен веществ  со средой. Любой организм должен получать из внешней среды определенные вещества как истопники энергии и материал для построения собственного тела. Продукты метаболизма, уже непригодные для дальнейшего использования, выводятся наружу. Таким образом, каждый организм или множество одинаковых организмов (популяция, вид) в процессе своей жизнедеятельности ухудшают условия своего обитания. Возможность обратного процесса — поддержания жизненных условий или даже их улучшения, — о чем говорилось выше, определяется тем, что биосферу населяют разные организмы (виды) с разным типом обмена веществ.
     Физиологическая разнокачественность живых организмов представляет собой фундаментальное  условие устойчивого существования жизни как планетарного явления. Теоретически можно представить возникновение жизни в одной форме, но в этом случае запрограммирована конечность жизни как явления: видоспецифичность обмена веществ неизбежно ведет к исчерпанию ресурсов и “загрязнению” среды продуктами жизнедеятельности, которые невозможно использовать вторично.
     В простейшем виде такой комплиментарный  набор качественных форм жизни представлен  продуцентами, консументами и редуцентами, совместная деятельность которых обеспечивает извлечение определенных веществ из внешней среды, их трансформацию на разных уровнях трофических цепей и минерализацию органического вещества до составляющих, доступных для очередного включения в круговорот'.
     Основные  элементы, мигрирующие по цепям биологического круговорота,— углерод, водород, кислород, азот, калий, кальций, кремний, фосфор и др.
     Совместная  деятельность различных живых организмов определяет закономерный круговорот отдельных  элементов и химических соединений, включающий введение их в состав живых  клеток, преобразования химических веществ в процессах метаболизма, выведение в окружающую среду, и деструкцию органических веществ, в результате которой высвобождаются минеральные вещества, вновь включающиеся в биологические циклы. Процессы круговорота происходят в конкретных экосистемах, но в полном виде биогеохимические циклы реализуются лишь на уровне биосферы в целом. Ниже рассматриваются наиболее значимые элементы круговорота веществ. Круговорот углерода существует в природе во многих формах, в том числе в составе органических соединений. Неорганическое вещество, лежащее в основе биогенного круговорота этого элемента, диоксид углерода (или углекислый газ, С02). В природе С02 входит в Состав атмосферы, а также находится в растворенном состоянии в гидросфере. Включение углерода в состав органических веществ происходит в процессе фотосинтеза, в результате которого на основе СО2 и Н2О образуются сахара. В дальнейшем другие процессы биосинтеза преобразуют эти углеводы в более сложные (крахмал, гликоген), а также в протеиды, липиды и др. Все эти соединения не только формируют ткани фотосинтезирующих организмов но и служат источником органических веществ для животных и незеленых растений.В процессе дыхания все организмы окисляют сложные органические вещества; конечный продукт этого процесса, С02, выводится во внешнюю среду, где вновь может вовлекаться в процесс фотосинтеза.
     Углеродсодержащие органические соединения тканей живых  организмов после их смерти подвергаются биологическому разложению организмами-редуцентами, в результате чего углерод в форме углекислоты вновь поступает в круговорот. Этот процесс составляет сущность так называемого почвенного дыхания. При определенных условиях в почве разложение накапливающихся мертвых остатков идет замедленным темпом — через образование сапрофагами (животными и микроорганизмами) гумуса, минерализация которого воздействием грибов и бактерий может идти с различной, в том числе и с низкой, скоростью. В некоторых случаях цепь разложения органического вещества бывает неполной. В частности, деятельность сапрофагов может подавляться недостатком кислорода или повышенной кислотностью. В этом случае органические остатки накапливаются в виде торфа; углерод не высвобождается и круговорот приостанавливается. Аналогичные ситуации возникали и в прошлые геологические эпохи, о чем свидетельствуют отложения каменного угля и нефти.
     В гидросфере приостановка круговорота  углерода связана с включением СО2 в состав СаСО3 в виде известняков, мела, кораллов. В этом случае углерод выключается из круговорота на целые геологические эпохи. Лишь поднятие органогенных пород ней уровнем моря приводит к возобновлению круговорота через вьпцелачивание известняков атмосферными осадками, а также биогенным путем — действием лишайников, корней растений. Круговорот азота. Главный источник азота органических соединений — молекулярный азот в составе атмосферы. Переход его в доступные живым организмам соединения может осуществляться разными путями. Так, электрические разряды при грозах синтезируют из азота и кислорода воздуха оксиды азота, которые с дождевыми водами попадают в почву в форме селитры или азотной кислоты. Имеет место и фотохимическая фиксация азота.
     Более важной формой усвоения азота является деятельность азотфиксирующих микроорганизмов, синтезирующих сложные протеиды. Отмирая, они обогащают почву органическим азотом, который быстро минерализуется. Таким путем в почву ежегодно поступает около 25 кг азота на 1 га (для сравнения — путем фиксации азота разрядами молний — 4 — 10 кг/га).
     Наиболее  эффективная фиксация азота осуществляется бактериями, формирующими симбиотические связи с бобовыми растениями. Образуемый ими органический азот диффундирует в ризосферу, а также включается в наземные органы растения-хозяина. Таким путем в наземных и подземных органах растений (например, клевера или люцерны) на 1 га накапливается за год 150—400 кг азота.
     Существуют  азотфиксирующио микроорганизмы, образующие симбиоз и с другими растениями. В водной среде и на очень влажной  почве непосредственную фиксацию атмосферного азота осуществляют цианобактерии (способные также к фотосинтезу). Во всех этих случаях азот попадает в растения в форме нитратов. Эти соединения через корни и проводящие пути доставляются в листья, где используются для синтеза протеинов; последние служат основой азотного питания животных.
     Экскреты  и мертвые организмы составляют базу цепей питания организмов-сапрофагов, разлагающих органические соединения с постепенным превращением органических азотсодержащих веществ в неорганические. Конечным звеном этой редукционной цепи оказываются аммонифицирующие организмы, образующие аммиак NH4, который затем может войти в цикл нитрификации: окисляют его в нитриты, a  окисляют нитриты в нитраты. Таким образом, цикл азота может быть продолжен.
     В то же время происходит постоянное возвращение азота в атмосферу действием бактерий-денитрификаторов, которые разлагают нитраты до Ni. Эти бактерии активны в почвах, богатых азотом и углеродом. Благодаря их деятельности ежегодно с 1 га почвы улетучивается до 50—60 кг азота.
     Азот  может выключаться из круговорота путем аккумуляции в глубоководных осадках океана. В известной мере это компенсируется выделением молекулярного Мг в составе вулканических газов.
     Круговорот  воды Вода - необходимое вещество в  составе любых живых организмов. Основная масса воды на планете сосредоточена в гидросфере. Испарение с поверхности водоемов представляет источник атмосферной влага; конденсация ее вызывает осадки, с которыми, в конце концов, вода возвращается в океан. Этот процесс составляет большой круговорот воды на поверхности Земного шара.
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.