На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


реферат Сущность ректификации

Информация:

Тип работы: реферат. Добавлен: 23.10.2012. Сдан: 2012. Страниц: 6. Уникальность по antiplagiat.ru: < 30%

Описание (план):


     1.1 Общие сведения.
     Для разделения смеси жидкостей обычно прибегают к перегонке. Разделение путем перегонки основано на различной  температуре кипения отдельных  веществ, входящих в состав смеси. Так, если смесь состоит из двух компонентов, то при испарении компонент с  более низкой температурой кипения (низкокипящий компонент, сокращенно НК) переходит в пары, а компонент с более высокой температурой кипения (высококипящий компонент, сокращенно ВК) остается в жидком состоянии. Полученные пары конденсируются, образуя так называемый дистиллят; неиспаренная жидкость называется остатком. Таким образом, в результате перегонки НК переходит в дистиллят, а НК – в остаток.
     Описанный процесс, называемый простой перегонкой, не даёт, однако, возможности произвести полное разделение компонентов смеси и получать их в чистом виде. Оба компонента являются летучими и поэтому оба переходят в пары, хотя и в различной степени. Поэтому образующиеся при перегонке пары не представляют собой чистого НК. Поскольку он вследствие большой летучести испаряется в большой степени, чем ВК, то пары обогащены НК по сравнению с содержанием его в исходной смеси. В описанном явлении и заключается основное отличие перегонки от выпаривания. При выпаривании один из компонентов (растворенной вещество) нелетуч, и в пары переходит только летучий компонент (растворитель).
     Для достижения более полного разделения компонентов применяют более  сложный вид перегонки –  РЕКТИФИКАЦИЮ.
     Ректификация  – процесс разделения гомогенных смесей летучих жидкостей путём  двустороннего массообмена и теплообмена между неравновесными жидкой и паровой фазами, имеющими различную температуру и движущимися противоположно друг другу. Ректификация заключается в противоточном взаимодействии паров, образующихся при перегонке, с жидкостью, получающейся при конденсации паров.
     Представим  себе аппарат, в котором снизу  вверх движутся пары, а сверху (навстречу  парам) подаётся жидкость, представляющая собой почти чистый НК. При соприкосновении  поднимающихся паров и частичное  испарение жидкости. При этом из паров конденсируется преимущественно  ВК, а из жидкости испаряется преимущественно  НК. Таким образом, стекающая жидкость обогащается ВК, а поднимающиеся  пары обогащаются НК, в результате чего выходящие из аппарата пары представляют собой почти чистый НК. Эти пары поступают в конденсатор (дефлегматор), где и конденсируются. Часть конденсата, возвращаемая на орошение аппарата, называется флегмой, а другая часть – отводится в качестве дистиллята.
     В настоящее время перегонка и  ректификация широко распространены в  химической технологии и применяются  для получения разнообразных  продуктов в чистом виде, а также  для разделения газовых смесей после  их сжижения (разделение воздуха на кислород и азот, разделение углеродных газов и т.д.) Однако при разделении чувствительных к повышенным температурам веществ, при извлечении ценных продуктов  или вредных примесей из сильно разбавленных растворов, разделении смесей близкокипящих компонентов в ряде случае может оказаться более целесообразным применение экстракции. 

     1.2 Основные свойства  смесей жидкостей  и их паров.
     Для понимания процессов перегонки  необходимо ознакомиться с некоторыми свойствами жидких смесей, в частности  с зависимостью давления пара, температуры  кипения и состава паров от состава жидкости. Например, свойства двойных смесей, т.е. смесей, состоящих  из двух компонентов, проще всего  изучать графическим методом  при помощи диаграмм. Существует три  вида диаграмм:
    диаграмма зависимости давления пара от состава жидкости (р - х-диаграмма);
    диаграмм зависимости температур кипения и конденсации от состава жидкости и пара (t – x – y-диаграмма);
    диаграмма равновесия, выражающая зависимость между составами пара и жидкости (р – х-диаграмма).
     В зависимости от взаимной растворимости  компонентов различают следующие  типы двойных смесей:
     1. Смеси взаимнорастворимых жидкостей, т.е. таких жидкостей, которые растворимы друг в друге в любых отношениях. Эти смеси в свою очередь разделяются на три группы:
     а) смеси жидкостей, в которых силы сцепления между молекулами обоих  компонентов такие же, что и  между молекулами каждого из компонентов (идеальные смеси);
     б) смеси с положительными отклонениями от закона Рауля, в которых силы сцепления  между молекулами НК и ВК меньше, чем между молекулами каждого  из компонентов;
     в) смеси с отрицательными отклонениями от закона Рауля, в которых силы сцепления  между молекулами НК и ВК больше, чем между молекулами каждого  из компонентов.
     2. Смеси жидкостей, нерастворимых  друг в друге.
     3. Смеси частично растворимых жидкостей. 

     1.3 Схемы ректификационных  установок.
     1.3.1 Ректификация двойных  смесей.
     Ректификацию  можно проводить периодическим  и непрерывным способом.
     При периодической ректификации (рис. 1) смесь загружается в куб 1 и нагревается паром, проходящим через змеевик 2. После того, как смесь в кубе закипит, образующиеся пары начинают поступать в колонну 3, оттуда по трубе 4 направляются в дефлегматор 5, где конденсируются. Часть конденсата (флегма) по трубе 6 стекает обратно в колонну, другая часть (дистиллят) по трубе 7 поступает в холодильник 8 и отсюда отводится в приёмник дистиллята.
     При таком процессе в колонне происходит укрепление паров, а в кубе – исчерпывание смеси. Исчерпывание продолжается в  течении некоторого времени, когда достигается требуемый состав смеси, операция заканчивается и остаток отводится из куба. 

       

     Рис. 1. Схема ректификационной установки  периодического действия:
     1-куб; 2-змеевик; 3-колонна; 4-труба для отвода  паров из колонны; 5-дефлегматор; 6-труба для возврата флегмы; 7-труба  для отбора дистиллята; 8-холодильник.
     
     Рис. 2. Схема ректификационной установки  непрерывного действия:
     1-теплообменник; 2-укрепляющая колонна; 3-исчерпывающая  колонна; 4-кипятильник; 5-дефлегматор; 6-распределительный стакан; 7-холодильник; 8-вентиль, регулирующий отбор  дистиллята. 

     По  мере протекания процесса условия работы установки постепенно изменяются. В начале процесса в колонну поступают из куба пары, богатые НК. В этот период нужно сравнительно небольшое количество флегмы, чтобы выделить из паров, содержащийся в них ВК. В ходе процесса выходящие из куба пары будут всё более обогащаться ВК, и для выделения его из паров количество флегмы должно быть увеличено. Если же количество флегмы оставить постоянным, будет возрастать содержание ВК в дистилляте.
     При непрерывной ректификации (рис. 2) смесь подаётся в среднюю часть колонны через теплообменник 1, обогреваемый остатком или паром. В верхней части колонны 2, расположенной выше точки ввода смеси, происходит укрепление паров. В нижней части колонны 3, расположенной ниже точки ввода смеси, происходит исчерпывание жидкости. Из исчерпывающей колонны жидкость стекает в кипятильник (куб) 4, обогреваемый паром. В кипятильнике образуются пары, поднимающиеся вверх по колонне; остаток непрерывно отводится из куба. Пары, выходящие из укрепляющей части колонны, поступают в дефлегматор 5, откуда флегма возвращается в колонну, а дистиллят направляется в холодильник 7.
     Преимущества  непрерывной ректификации по сравнению  с периодической:
    условия работы установки не изменяются в ходе процесса, что позволяет установить точный режим, упрощает обслуживание и облегчает автоматизацию процесса;
    отсутствуют простои между операциями, что приводят к повышению производительности установки;
    расход тепла меньше, причем возможно использование тепла остатка на подогрев исходной смеси в теплообменнике.
     Благодаря перечисленным преимуществам в  производствах крупного масштаба применяют  главным образом непрерывную  ректификацию, периодические процессы ректификации находят применение лишь в небольших, неравномерно работающих производствах. 

     1.3.2 Ректификация многокомпонентных  смесей.
     Разделение  многокомпонентных смесей, как и  двойных, производится периодически или  непрерывно.
     Периодическая ректификация проводится в одной  колонне по схеме, показанной на рис. 1, путём последовательного (по времени) отбора отдельных фракций. При этом наряду с фракциями, содержащими  чистые продукты, получается большое  количество промежуточных фракций, содержащих смеси различных продуктов. Промежуточные фракции собирают отдельно и присоединяют к смеси, подаваемой на следующую операцию, или по мере накопления фракций подвергают их отдельной ректификации, что сильно усложняет ведение процесса.
     а
     
     б
       

     Рис. 3. Схемы разделения тройной смеси
     1, 2 - ректификационные колонны. 

     Для непрерывной ректификации многокомпонентных  смесей применяют установки, состоящие  из нескольких колонн. В каждой колонне  отделяется одна из составных частей смеси или же смесь вначале  разделяется на более простые  по составу смеси, из которых в  последующих по ходу процесса колоннах выделяются отдельные компоненты.
     Количество  колонн в установке должно быть на единицу меньше числа компонентов  в исходной смеси. Так, для разделения тройной смеси требуются две  колонны, причём процесс можно вести  двумя способами. По одному способу (рис. 3,а) в первой колонне 1 отгоняется НК, а остаток, состоящий из смеси  СК (компонент со средней температурой кипения) и ВК, передаётся во вторую колонну 2, где происходит разделение остатка. По другому способу (рис. 3,б)в первой колонне 1 отгоняется смесь СК и НК, которая затем разделяется на второй колонне 2, а ВК переходит в остаток первой колонны. 

     1.3.3 Ректификация под  различным давлением.
     В зависимости от температуры кипения  разделяемых жидкостей ректификацию проводят под различным давлением. При температурах кипения от 30 до 150? С обычно применяют ректификацию под атмосферным давлением. Ректификацию в вакууме применяют при разделении высококипящих жидкостей для снижения температур их кипения. Ректификацию под давлением проводят при разделении жидкостей с низкой температурой кипения, в частности при разделении сжиженных газов.
     Давление  в кубе всегда больше давления наверху  колонны на величину ее гидравлического  сопротивления. Это имеет особенно большое значение для процесса ректификации, проводимого в вакууме, так как  в случае большого гидравлического  сопротивления колонны разрежение в кубе может оказаться недостаточным  даже при очень глубоком вакууме  наверху колонны. Поэтому гидравлическое сопротивление колонн, работающих при  разрежении, должно быть возможно меньше. 

     1.3.4 Дефлегмация.
     Дефлегмацию ведут при частичной или полной конденсации паров.
     При частичной конденсации (рис. 4,а) в  дефлегматоре 1 конденсируется часть  паров, требуемая для образования  флегмы. Остальная часть паров поступает в конденсатор 2, где образуют дистиллят, который затем охлаждается в холодильнике 2, где образует дистиллят, который затем охлаждается в холодильнике 3. При частичной конденсации происходит некоторое обогащение пара НК и получается дистиллят с меньшим содержанием ВК, чем в парах, выходящих из колонны. Частичная конденсация применяется при простой перегонке. При ректификации частичная конденсация также применяется часто, но в этом случае она не даёт особых преимуществ, так как укрепляющее действие дефлегматора незначительно.
     При полной конденсации (см. рис. 2) поступающие из колонны пары полностью конденсируются в дефлегматоре 5. Конденсат стекает в стакан 6, где делится на две части. Одна часть стекает в холодильник 7 и далее в сборник дистиллята. Другая часть вытекает из стакана через переливную трубу и возвращается в колонну в качестве флегмы. Количество отбираемого дистиллята регулируется при помощи вентиля 8.
     
                            а                                       б  

     Рис. 4. Схемы дефлегмации:
     а – при частичной конденсации; б – при полной конденсации (с  подачей флегмы насосом). 1-дефлегматор; 2-конденсатор; 3-холодильник; 4-сборник;
     5-насос; 6-трубка.
     По  другой схеме полной конденсации (рис. 4,б) дефлегматор 1 располагают ниже верха колонны. Конденсат отводится  в сборник 4. Флегма подается на орошение колонны насосом 5. Дистиллят отбирается из сборника 4 или из напорной линии  насоса.
     Трубка 6 сообщается с атмосферой (непосредственно  или гидравлический затвор) или, при  ректификации в вакууме, присоединяется к вакуум-насосу.
     Основное  преимущество полной конденсации заключается  в возможности более простого и точного регулирования процесса. 

     1.3.5 Использование тепла  при ректификации.
     При ректификации тепло расходуется  на испарение флегмы и дистиллята, а также на нагревание остатка. Тепло  испарения отводится с охлаждающей  водой в дефлегматоре, тепло остатка  теряется вместе с ним или отводится  в холодильнике, в котором обычно охлаждают остаток.
     При непрерывной ректификации тепло  остатка может быть использовано для предварительного подогрева  исходной смеси до температуры кипения. Для этого горячий остаток  пропускают через теплообменник (см. рис. 2), в котором подогревается смесь, поступающая на ректификацию. Можно также охлаждать исходной смесью дефлегматор; нагретая в дефлегматоре смесь поступает затем в теплообменник, где подогревается остатком. Для подогрева смеси можно использовать и конденсат водяного пара, обогревающего кипятильник колонны.  

     1.4 Конструкции ректификационных  колонн.
     Ректификационные  колонны отличаются, в основном, конструкцией внутреннего устройства для распределения жидкой и паровой  фаз. Взаимодействие жидкости и пара осуществляется в колоннах путём  барботирования пара через слой жидкости на тарелках или же путём поверхностного контакта пара и жидкости на насадке или на поверхности жидкости, стекающей тонкой плёнкой.
     В ректификационных установках применяют  три основных типа колонн:
     1) колпачковые,
     2) сетчатые,
     3) насадочные,
     4) барботажные.
     Разработаны также конструкции аппаратов  для ректификации, в которых интенсификация процесса разделения достигается под  действием центробежной силы (центробежные ректификаторы).
     1.4.1 Колпачковые колонны.
     Эти колонны наиболее распространены в  ректификационных установках. На рис.5 схематически изображена колонна небольшого диаметра, состоящая из тарелок 1, на каждой из которых имеется один колпачок 2 круглого сечения и патрубок 3 для  прохода пара. Края колпачка погружены  в жидкость. Благодаря этому на тарелке создается гидравлический затвор, и пар, выходящий из колпачка, должен проходить через слой жидкости, находящийся на тарелке. Колпачки имеют  отверстия или зубчатые прорези  для раздробления пара на мелкие пузырьки, т.е. для увеличения поверхности  его соприкосновения с жидкостью.
     Приток  и отвод жидкости, а также высоту жидкости на тарелке регулируют при  помощи переливных трубок 4, которые  расположены на диаметрально противоположных  концах тарелки; поэтому жидкость течет  на соседних тарелках во взаимно противоположных  направлениях.
       

     Рис. 5. Схема устройства тарельчатой (колпачковой) колонны: 1-тарелка; 2-колпачок; 3-паровой патрубок; 4-переливная трубка. 

     1.4.1.1 Схема работы колпачковой тарелки.
     Схема работы колпачковой тарелки изображена на рис. 6. Выходящие через прорези колпачки пузырьки пара сливаются в струйки, которые проходят через слой жидкости, находящейся на тарелке, и над жидкостью образуется слой пены и брызг, - основная область массообмена и теплообмена между паром и жидкостью на тарелке.
     Процесс барботажа на тарелке весьма сложен. Проводившиеся до сих пор исследования (В. Н. Стабников, А. М. Шуер и др.) дают возможность представить лишь качественную картину процесса.
     При движении струйки пара обычно сливаются  друг с другом; при этом некоторая  часть сечения прорезей обнажается и образуются каналы, по которым газ проходит из-под колпачка сквозь жидкость. Поэтому поверхность взаимодействия газа с жидкостью непосредственно в зоне барботажа невелика. Основная зона фазового контакта находится в области пены и брызг над жидкостью, которые образуются вследствие распыления пара в жидкости и уноса брызг при трении пара о жидкость.
     Интенсивность образования пены и брызг зависит  от скорости пара и глубины погружения колпачка в жидкость. Сечение и  форма прорезей колпачка имеют второстепенное значение, но желательны узкие прорези, так как они разбивают газ  на более мелкие струйки, увеличивая поверхность соприкосновения с  жидкостью.
     Работа  колпачка в оптимальных условиях при предельной скорости и наибольшего  к.п.д. высота открытия прорези колпачка наибольшая, что способствует увеличению пути паров и времени их контакта с жидкостью.
       

     Рис. 6. Схема работы колпачковой тарелки. 

     1.4.1.2 Виды колпачковых тарелок.
     1. Колпачковая тарелка с радиальным переливом жидкости.
     Для создания достаточной поверхности  соприкосновения между паром  и жидкостью на тарелках обычно устанавливают  не один, а большое число колпачков (рис. 7).
     Колпачки  располагают на близком расстоянии друг от друга (равен в среднем 1,5 диаметра колпачка) с тем, чтобы пузырьки, выходящие из соседних колпачков, прежде чем принять вертикальное направление  движения, могли бы сталкиваться друг с другом.
     Типовые Колпачковые тарелки изготовляют с радиальным и с диаметральным переливом жидкости. Тарелки первого типа (рис. 3,а) представляют собой вырезанные из стального листа диски 1 и 2, которые крепятся на болтах 7 и прокладках 8 к опорному кольцу 3. Колпачки 4 расположены на тарелке в шахматном порядке. Жидкость переливается на лежащую ниже тарелку по периферийным переливным трубкам 5, течёт к центру и сливается на следующую тарелку по центральной переливной трубке 6, затем снова течёт к периферии и т.д. 

       

     Рис. 7. Колпачковая тарелка с радиальным переливом жидкости.
     1 и 2-диски; 3-опорное кольцо; 4-колпачки; 5-периферийные колпачковые трубки; 6-центральная переливная трубка; 7-болты; 8-прокладки. 

     2. Колпачковая тарелка с диаметральным переливом жидкости.
     Тарелки этого типа (рис. 8) представляют собой  срезанный с двух сторон диск 1, установленный  на опорном листе 2, с одной стороны  тарелка ограничена приёмным порогом 3, а с другой стороны – переливным порогом 5 со сменной гребенкой 6, при  помощи которой регулируют уровень  жидкости на тарелке.
     В тарелке этой конструкции периметр слива увеличен путём замены сливных  труб сегментообразными отверстиями, ограниченными перегородками 7 для того, чтобы уменьшить вспенивание и брызгообразование при переливе жидкости. 
 

       

     Рис. 8. Колпачковая тарелка с диаметральным переливом жидкости.
     1-диск; 2-опорный лист; 3-приёмный порог; 4-колпачки; 5-переливной порог; 6-сменная  гребёнка; 7-перегородка. 

     3. Колпачковая тарелка с туннельными колпачками.
     В тарелках с туннельными колпачками (рис. 9) колпачки 1 представляют собой  стальные штампованные пластины полукруглого сечения с гребенчатыми краями; каждый колпачок устанавливают над желобом 2 строго горизонтально при помощи двух уравнительных шпилек 3. Жидкость сливается через переливной порог 4 в сегментный карман 5, затем через  три переливных трубки 6 – в приёмный сегментный карман следующей тарелки. Здесь образуется гидравлический затвор, и поднимающиеся по колонне пары не могут проходить на тарелку, лежащую  выше, минуя колпачки. Ток жидкости на тарелках – диаметральный.
     На  тарелках такого типа можно легко  регулировать высоту слоя жидкости, быстро производить установку в горизонтальной плоскости имеющегося на ней небольшого числа колпачков и, следовательно, создавать благоприятные условия  для равномерного распределения  паров. Конструкция тарелки отличается простотой монтажа и демонтажа. 

       

     Рис. 9. Колпачковая тарелка с туннельными колпачками.
     1-колпачки; 2-желоб; 3-шпилька; 4-переливной порог; 5-сегментный карман; 6-переливные  трубки; 7-опорный уголок с вырезами. 

     Ректификационные  тарельчатые колонны с круглыми (капсульными) и туннельными колпачками, предназначенные для работы под  атмосферным давлением, имеют диаметры 1000, 1200, 1400, 1600, 1800, 2200, 2600 и 3000 мм. Эти колонны  изготавливают из углеродистой стали. Разделение химически активных смесей производят в колоннах из кислотоупорных сталей, высококремнистого чугуна и  других химически стойких материалов. 

     1.4.2 Сетчатые колонны.
     Колонны этого типа (рис. 10) состоят из вертикального  цилиндрического корпуса 1 с горизонтальными  тарелками 2, в которых просверливается  значительное число мелких отверстий, равномерно распределенных по всей поверхности тарелки. Для слива жидкости и регулирования ее уровня на тарелке служат переливные трубки 3. Нижние концы трубок 3 погружены в стаканы 4 на лежащих ниже тарелках и образуют гидравлические затворы. 

     
     Рис. 10. Схема устройства сетчатой колонны.
     1-корпус; 2-сетчатая тарелка; 3-переливная трубка; 4-стакан.
       

     Рис. 11. Схема работы сетчатой тарелки.
     Пар проходит через отверстия тарелки (рис. 11) и распределяется в жидкости в виде мелких струек; лишь на некотором  расстоянии от дна тарелки образуется слой пены и брызг – основная область массообмена и теплообмена на тарелке.
     В определенном диапазоне нагрузок сетчатые тарелки обладают большим к.п.д., чем колпачковые. Однако допустимые нагрузки по жидкости и пару для сетчатых колонн относительно невелики. При слишком малой скорости пара (около 0,1 м/сек) происходит просачивание жидкости через отверстия тарелки и в связи с этим резкое падение к.п.д. тарелки.
     Давление  и скорость пара, проходящего через  отверстия сетки, должны быть достаточными для преодоления давления слоя жидкости на тарелке и должны препятствовать ее стекания через отверстия.
     Проскок жидкости у сетчатых тарелок возрастает с увеличением диаметра тарелки  и отклонением ее от строго горизонтального  положения. Поэтому диаметр и  число отверстий следует подбирать  так, чтобы жидкость удерживалась не тарелках и не увлекалась механически паром. Обычно диаметр отверстий сетчатых тарелок принимают равным 0,8-3 мм.
     Сетчатые  колонны эффективно работают только при определенных скоростях ректификации, и регулирование режима их работы затруднительно. Кроме того, сетчатые тарелки требуют весьма тщательной горизонтальной установки, так как  иначе пары будут проходить через  часть поверхности сетки, не соприкасаясь с жидкостью.
     Сетчатые  тарелки уступают колпачковым по допустимому верхнему пределу нагрузки; при значительных нагрузках потеря напора в них больше, чем у колпачковых.
     При внезапном прекращении подвода  пара или значительном снижении его  давления тарелки сетчатой колонны  полностью опоражниваются от жидкости, и требуется заново запускать  колонну для достижения заданного  режима ректификации.
     Очистка, промывка и ремонт сетчатых тарелок  производятся относительно удобно и  легко.
     Чувствительность  к колебаниям нагрузки, а также  загрязнениям и осадкам, которые  образуются при перегонке кристаллизующихся  веществ и быстро забивают отверстия  тарелки, ограничивают область использования  сетчатых колонн; их применяют, главным  образом, при ректификации спирта и  жидкого воздуха (кислородные установки).
     Для повышения к.п.д., в сетчатых тарелках (как и в колпачковых) создают более длительный контакт между жидкостью и паром. Существует сетчатая колонна с принудительным круговым движением жидкости на тарелках – одна из современных конструкций сетчатых тарелок, в которых длительный контакт достигается принудительным круговым движением жидкости на тарелке при одинаковом направлении ее движения на всех тарелках колонны. 

     1.4.3 Насадочные колонны.
     В таких колоннах обычно применяется  кольцевая насадка. Наиболее распространены кольца размером 25?25?3 мм. В укрепляющей  колонне количество жидкости меньше количества поднимающихся паров  на количество отводимого дистиллята, в исчерпывающей же колонне количество жидкости больше, чем в укрепляющей, на количество вводимой смеси.
     Неравномерное распределение жидкости по сечению  колонны может привести к недостаточно четкому разделению компонентов, особенно при большом диаметре колонны. Низкое гидравлическое сопротивление насадочных колонн существенно лишь при ректификации в вакууме.
     Насадочные  ректификационные колонны применяются  главным образом небольшого диаметра (примерно до 1 м), а также при ректификации в вакууме и для разделения химически агрессивных веществ. 

     1.4.4 Барботажные колонны.
     Применяются с колпачковыми, ситчатыми и провальными тарелками. Значительное сопротивление барботажных колонн при ректификации обычно не существенно (кроме процесса ректификации в вакууме), так как вызывает лишь некоторое повышение давления и, следовательно, температуры кипения в нижней части колонны и не связано с дополнительным расходом энергии.
     Барботажные колонны являются наиболее распространенными ректификационными аппаратами благодаря возможности разделения в них компонентов с любой степенью четкости. Чаще всего применяются колонны с колпачковыми тарелками. Колонны с ситчатыми и провальными тарелками применяются при разделении незагрязненных жидкостей в установках, работающих с постоянной нагрузкой.
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.