На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


доклад Классификация систем по сложности

Информация:

Тип работы: доклад. Добавлен: 23.10.2012. Сдан: 2012. Страниц: 5. Уникальность по antiplagiat.ru: < 30%

Описание (план):


?Семинар СЛОЖНОСТЬ СИСТЕМ
Классификация систем по сложности
Определение большой системы. Существует ряд подходов к разделению систем по сложности. В частности, Г. Н. Поваров в зависимости от числа элементов, входящих в систему, выделяет четыре класса систем:
малые системы (10...103 элементов),
сложные (104...107 элементов),
ультрасложные (107. ..1030 элементов),
суперсистемы (1030.. .10200 элементов).
Так как понятие элемента возникает относительно задачи и цели исследования системы, то и данное определение сложности является относительным, а не абсолютным.
Английский кибернетик С. Бир классифицирует все кибернетические системы на простые и сложные в зависимости от способа описания: детерминированного или теоретико-вероятностного. А. И. Берг определяет сложную систему как систему, которую можно описать не менее чем на двух различных математических языках (например, с помощью теории дифференциальных уравнений и алгебры Буля).
Очень часто сложными системами называют системы, которые нельзя корректно описать математически, либо потому, что в системе имеется очень большое число элементов, неизвестным образом связанных друг с другом, либо неизвестна природа явлений, протекающих в системе.
 Касти, который рассматривает сложность систем в двух аспектах: структурную сложность и сложность поведения.    
Четкое определение и критерии СС НСУ в настоящее время отсутствуют. Однако есть признаки, такие как, многомерность, многосвязность, многоконтурность, а так же многоуровневый, составной и многоцелевой характер построения, по которым можно отнести модель к классу СС НСУ.  Данный термин использовался в работах научной
При разработке сложных систем возникают проблемы, относящиеся не только к свойствам их составляющих элементов и подсистем, но также к закономерностям функционирования системы в целом. При этом появляется широкий круг специфических задач, таких, как определение общей структуры системы; организация взаимодействия между элементами и подсистемами; учет влияния внешней среды; выбор оптимальных режимов функционирования системы; оптимальное управление системой и др.
Чем сложнее система, тем большее внимание уделяется этим вопросам. Математической базой исследования сложных систем является теория систем. В теории систем большой системой (сложной, системой большого масштаба, Lage Scale Systems) называют систему, если она состоит из большого числа взаимосвязанных и взаимодействующих между собой элементов и способна выполнять сложную функцию.
Четкой границы, отделяющей простые системы от больших, нет. Деление это условное и возникло из-за появления систем, имеющих в своем составе совокупность подсистем с наличием функциональной избыточности. Простая система может находиться только в двух состояниях: состоянии работоспособности (исправном) и состоянии отказа (неисправном). При отказе элемента простая система либо полностью прекращает выполнение своей функции, либо продолжает ее выполнение в полном объеме, если отказавший элемент резервирован. Большая система при отказе отдельных элементов и даже целых подсистем не всегда теряет работоспособность, зачастую только снижаются характеристики ее эффективности. Это свойство больших систем обусловлено их функциональной избыточностью и, в свою очередь, затрудняет формулировку понятия «отказ» системы.
Под большой системой понимается совокупность материальных ресурсов, средств сбора, передачи и обработки информации, людей-операторов, занятых на обслуживании этих средств, и людей-руководителей, облеченных надлежащими правами и ответственностью для принятия решений. Материальные ресурсы — это сырье, материалы, полуфабрикаты, денежные средства, различные виды энергии, станки, оборудование, люди, занятые на выпуске продукции, и т. д. Все указанные элементы ресурсов объединены с помощью некоторой системы связей, которые по заданным правилам определяют процесс взаимодействия между элементами для достижения общей цели или группы целей.
Примеры больших систем: информационная система; пассажирский транспорт крупного города; производственный процесс; система управления полетом крупного аэродрома; энергетическая система и др.
Характерные особенности больших систем. К ним относятся:
большое число элементов в системе (сложность системы);
взаимосвязь и взаимодействие между элементами;
иерархичность структуры управления;
обязательное наличие человека в контуре управления, на которого возлагается часть наиболее ответственных функций управления.
Сложность системы. Пусть имеется совокупность из n элементов. Если они изолированы, не связаны между собой, то эти я элементов еще не являются системой. Для изучения этой совокупности достаточно провести не более чем n исследований. В общем случае в системе связь элемента А с элементом Б не эквивалентна связи элемента Б с элементом А, и поэтому необходимо рассматривать п(п—1) связей. Если характеризовать состояние каждой связи наличием или отсутствием в данный момент, то общее число состояний (для такого самого простого поведения) системы будет равно 2^n. Даже при небольших п это фантастическое число. Например, пусть п== 10. Число связей п(п-1) = 90. 
Поэтому изучение БС путем непосредственного обследования ее состояний оказывается весьма громоздким. Следовательно, необходимо использовать ЭВМ и разрабатывать методы, позволяющие сократить число обследуемых состояний БС. Сокращение числа состояний БС — первый шаг в формальном описании систем.
Взаимосвязь и взаимодействие между элементами
в БС. Разделение системы на элементы и подсистемы может быть произведено различными способами. Элементом системы будем называть совокупность различных технических средств и людей, которые при данном исследовании рассматриваются как одно неделимое целое.
Расчленение системы на элементы — второй шаг при формальном описании системы. Внутренняя структура элемента при этом не является предметом исследования. Имеют значение только свойства, определяющие его взаимодействие с другими элементами системы и оказывающие влияние на характер системы в целом.
Формально любая совокупность элементов системы вместе со связями между ними может рассматриваться как ее подсистема. Использование этого понятия оказывается особенно плодотворным в тех случаях, когда в качестве подсистем фигурируют некоторые более или менее самостоятельно функционирующие части системы.
В системе управления полетом самолета можно выделить следующие подсистемы:
систему дальнего обнаружения и управления; систему многоканальной дальней связи; многоканальную систему слепой посадки и взлета самолета; систему диспетчеризации; бортовую аппаратуру самолета.  Подсистемы БС сами могут быть большими системами, которые легко расчленить на соответствующие подсистемы. Так, большую систему «Городской пассажирский транспорт» по видам транспорта можно расчленить на подсистемы: троллейбусы, автобусы, трамвай, метрополитен, такси. Каждая из этих подсистем, в свою очередь, является БС. Так, таксомоторное хозяйство состоит из: сотен (тысяч) автомобилей и шоферов, нескольких автопарков, средств технического обслуживания и управления.
Выделение подсистем — третий важный шаг при формальном описании БС.
Иерархичность структуры управления. Управление в БС может быть централизованным и децентрализованным. Централизованное управление (рис. 1.1, а) предполагает концентрацию функции управления в одном центре БС. Децентрализованное — распределение функции управления по отдельным эле (рис. 1.1, б). Типичные БС, встречающиеся на практике, относятся, как правило, к промежуточному типу, когда степень централизации находится между двумя крайними случаями: чисто централизованным и чисто децентрализованным.
Децентрализация управления позволяет сократить объем перерабатываемой информации, однако в ряде случаев это приводит к снижению качества управления.
Для управления с иерархичной структурой управления характерно наличие нескольких уровней управления (рис. 1.1, в).
Примеры иерархической структуры управления: административное управление, управление в вооруженных силах, снабжение.
Обязательное наличие человека в контуре управления. Поскольку в БС обязательно наличие человека, она является всегда эргатической системой. Часть функций управления выполняется человеком. Эта особенность БС связана с целым рядом факторов:
участие человека в БС требует, чтобы управление учитывало социальные, психологические, моральные и физиологические факторы, которые не поддаются формализации и могут быть учтены в системах управления только человеком;
необходимость в ряде случаев принимать решение на основенеполной информации, учитывать неформализуемые факторы —все это должен делать человек с большим опытом, хорошо понимающий задачи, стоящие перед системой; могут быть системы, в которых нет отношений подчиненности, а существуют лишь отношения взаимодействия (межгосударственные отношения, отношения предприятий «по горизонтали»).
 

Классификация систем. Большие и сложные системы

Классификацию систем можно осуществить по разным критериям. Ее часто жестко невозможно проводить и она зависит от цели и ресурсов. Приведем основные способы классификации (возможны и другие критерии классификации систем).
1.       По отношению системы к окружающей среде:
o         открытые (есть обмен с окружающей средой ресурсами);
o         закрытые (нет обмена ресурсами с окружающей средой).
2.       По происхождению системы (элементов, связей, подсистем):
o         искусственные (орудия, механизмы, машины, автоматы, роботы и т.д.);
o         естественные (живые, неживые, экологические, социальные и т.д.);
o         виртуальные (воображаемые и, хотя они в действ ительности реально не существующие, но функционирующие так же, как и в случае, если бы они реально существовали);
o         смешанные (экономические, биотехнические, организационные и т.д.).
3.       По описанию переменных системы:
o         с качественными переменными (имеющие только лишь содержательное описание);
o         с количественными переменными (имеющие дискретно или непрерывно описываемые количественным образом переменные);
o         смешанного (количественно — качественное) описания.
4.       По типу описания закона (законов) функционирования системы:
o         типа «Черный ящик» (неизвестен полностью закон функционирования системы; известны только входные и выходные сообщения системы);
o         не параметризованные (закон не описан, описываем с помощью хотя бы неизвестных параметров, известны лишь некоторые априорные свойства закона);
o         параметризованные (закон известен с точностью до параметров и его возможно от ADE нести к некоторому классу зависимостей);
o         типа «Белый (прозрачный) ящик» (полностью известен закон).
5.       По способу управления системой (в системе):
o         управляемые извне системы (без обратной связи, регулируемые, управляемые структурно, информационно или функционально);
o         управляемые изнутри (самоуправляемые или саморегулируемые — программно управляемые, регулируемые автоматически, адаптируемые — приспосабливаемые с помощью управляемых изменений состояний и самоорганизующиеся — изменяющие во времени и в пространстве свою структуру наиболее оптимально, упорядочивающие свою структуру под воздействием внутренних и внешних факторов);
o         с комбинированным управлением (автоматические, полуавтоматические, автоматизированные, организационные).
Под регулированием понимается коррекция управляющих параметров по наблюдениям за траекторией поведения системы — с целью возвращения системы в нужное состояние (на нужную траекторию поведения системы; при этом под траекторией системы понимается последовательность принимаемых при функционировании системы состояний системы, которые рассматриваются как некоторые точки во множестве состояний системы).
Пример. Рассмотрим экологическую систему «Озеро». Это открытая, естественного происхождения система, переменные которой можно описывать смешанным образом (количественно и качественно, в частности, температура водоема — количественно описываемая характеристика), структуру обитателей озера можно описать и качественно, и количественно, а красоту озера можно описать качественно. По типу описания закона функционирования системы, эту систему можно отнести к не параметризованным в целом, хотя возможно выделение подсистем различного типа, в частности, различного описания подсистемы «Водоросли», «Рыбы», «Впадающий ручей», »Вытекающий ручей», «Дно», «Берег» и др. Система «Компьютер» — открытая, искусственного происхождения, смешанного описания, параметризованная, управляемая извне (программно). Система «Логический диск» — открытая, виртуальная, количественного описания, типа «Белый ящик» (при этом содержимое диска мы в эту систему не включаем!), смешанного управления. Систем «Фирма» — открытая, смешанного происхождения (организационная) и описания, управляемая изнутри (адаптируемая, в частности, система).
Система называется большой, если ее исследование или моделирование затруднено из-за большой размерности, т.е. множество состояний системы S имеет большую размерность. Какую же размерность нужно считать большой? Об этом мы можем судить только для конкретной проблемы (системы), конкретной цели исследуемой проблемы и конкретных ресурсов.
Большая система сводится к системе меньшей размерности использованием более мощных вычислительных средств (или ресурсов) либо разбиением задачи на ряд задач меньшей размерности (если это возможно).
Пример. Это особенно актуально при разработке больших вычислительных систем, например, при разработке компьютеров с параллельной архитектурой или алгоритмов с параллельной структурой данных и с их параллельной обработкой.
Система называется сложной, если в ней не хватает ресурсов (главным образом, — информационных) для эффективного описания (состояний, законов функционирования) и управления системой — определения, описания управляющих параметров или для принятия решений в таких системах (в таких системах всегда должна быть подсистема принятия решения).
Пример. Сложными системами являются, например, химические реакции, если их рассматривать на молекулярном уровне; клетка биологического образования, рассматриваемая на метаболическом уровне; мозг человека, если его рассматривать с точки зрения выполняемых человеком интеллектуальных действий; экономика, рассматриваемая на макроуровне (т.е макроэкономика); человеческое общество — на политико-религиозно-культурном уровне; ЭВМ (особенно, — пятого поколения), если ее рассматривать как средство получения знаний; язык, — во многих аспектах.
Сложность этих систем обусловлена их сложным поведением. Сложность системы зависит от принятого уровня описания или изучения системы-макроскопического или микроскопического.
Сложность системы может быть внешней и внутренней.
Внутренняя сложность определяется сложностью множества внутренних состояний, потенциально оцениваемых по проявлениям системы, сложностью управления в системе.
Внешняя сложность определяется сложностью взаимоотношений с окружающей средой, сложностью управления системой потенциально оцениваемых по обратным связям системы и среды.
Сложные системы бывают:
?        сложности структурной или статической (не хватает ресурсов для построения, описания, управления структурой);
?        динамической или временной (не хватает ресурсов для описания динамики поведения системы и управления ее траекторией);
?        информационной или информационно — логической, инфологической (не хватает ресурсов для информационного, информационно-логического описания системы);
?        вычислительной или реализации, исследования (не хватает ресурсов для эффективного про
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.