На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


реферат Спиртовое брожение

Информация:

Тип работы: реферат. Добавлен: 23.10.2012. Сдан: 2011. Страниц: 7. Уникальность по antiplagiat.ru: < 30%

Описание (план):


 
        Содержание: 

    Введение
 
    Брожение
 
    Основные  типы брожения
 
    История спиртового брожения
 
    Спиртовое брожение
 
    Этапы спиртового брожения
 
    Микроорганизмы, осуществляющие спиртовое брожение
 
         Используемая литература. 
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     

Введение  

В 1850 г. Пастер установил, что виноградная  кислота состоит из двух изомерных  форм, имеющих одну и ту же химическую формулу, но кристаллизующихся в  виде кристаллов, формы которых относятся  друг к другу, как несимметричный предмет к своему зеркальному  отображению. Эти формы отличаются друг от друга определенным физическим признаком, именно, - противоположным вращением плоскости поляризации. Явление это было объяснено Вант-Гоффом в 1874 г. с точки зрения пространственного расположения атомов. 

Пастер  установил, что плесневый гриб Penicillium glaucum, развиваясь на растворах виноградной кислоты, в первую очередь потребляет одну из двух форм, именно правовращающую, встречающуюся в виде естественного продукта. От изомерии виноградной кислоты он перешел к изомерии амиловых спиртов, образующихся при спиртовом брожении. Это заставило его обратиться к изучению брожений и их природы. 

В 1855 г. Пастер обнаружил, что сырой амиловый спирт брожения состоит из двух химически  тождественных амиловых спиртов: оптически  неактивного и способного вращать плоскость поляризованного света. Уже в прежних своих кристаллографических исследованиях Пастер пришел к обобщению, что оптически активные вещества свойственны только органическому миру и их образование связано с процессом жизни. Отсюда Пастер сделал логическое заключение, что и оптически активный амиловый спирт возникает в процессе брожения при участии живого организма. Если это верно, то брожение есть процесс, связанный с жизнью, сам же фермент должен быть живым организмом. В результате длинного ряда блестящих исследований Пастером была создана теория брожения. 

Сам Пастер говорит: "Вовлеченный, даже, вернее сказать, вынужденный логическим развитием  моих исследований, я перешел от кристаллографии и молекулярной химии к изучению возбудителей брожения". 

Поскольку фрукты сбраживаются в своем натуральном  состоянии, брожение появилось раньше человеческой истории. Однако, люди с  некоторых пор научились контролировать процесс брожения. Есть веские доказательства того, что люди сбраживали напитки в Вавилоне около 5000 г. до н.э. , в Древнем Египте около 3000 г. до н.э. , в доиспанской Мексике около 2000 г. до н.э.  и в Судане около 1500 г. до н.э. Также существуют данные о дрожжевом хлебе в Древнем Египте около 1500 г. до н.э.  и сбраживания молока в Вавилоне около 3000 г. до н.э.  Китайцы, вероятно, первыми стали сбраживать овощи. 

Жизнь микробов возможна и без доступа  кислорода воздуха. Энергия, необходимая  для жизнедеятельности организма, в этих условиях образуется в результате процессов брожения. Наиболее распространены виды брожений, в процессе которых происходит распад органических веществ (преимущественно Сахаров) под влиянием микроорганизмов, представляющий совокупность окислительно-восстановительных реакций. Брожения никогда не приводят к полному окислению органических веществ. Многие характерные формы брожения протекают без участия кислорода воздуха - анаэробно. 

Поскольку свободный кислород, имеющийся на нашей планете, образовался в  результате фотосинтеза, возникшего на более поздних этапах развития жизни на Земле, совершенно очевидно, что анаэробный способ извлечения энергии - брожение - более древний, чем процесс дыхания. 

Брожение  известно людям с незапамятных времен. Тысячелетиями человек пользовался  спиртовым брожением при изготовлении вина. Еще раньше было известно о молочнокислом брожении. Люди употребляли в пищу молочные продукты, готовили сыры. При этом они не подозревали, что эти процессы происходят с помощью микроорганизмов. Термин "брожение" был введен голландским алхимиком Ван Хельмонтом в XVII в. для процессов, идущих с выделением газов (fermentatio - кипение). Затем в XIX в. основоположник современной микробиологии Луи Пастер показал, что брожение является результатом жизнедеятельности микробов, и установил, что различные брожения вызываются разными микроорганизмами. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Брожение 

Броже?ние (тж. сбра?живание, фермента?ция) —  «это такой метаболический процесс, при котором регенерируется АТФ, а продукты расщепления органического  субстрата могут служить одновременно и донорами, и акцепторами водорода».
Брожение  — это анаэробный (происходящий без участия кислорода) метаболический распад молекул питательных веществ, например глюкозы. По выражению Луи  Пастера, «брожение — это жизнь  без кислорода». Большинство типов брожения осуществляют микроорганизмы — облигатные или факультативные анаэробы. 

Брожение  не высвобождает всю имеющуюся в  молекуле энергию, поэтому промежуточные  продукты брожения могут использоваться в ходе клеточного дыхания.
Термин  брожение также используется в более широком смысле, для обозначения бурного роста микроорганизмов в соответствующей среде. При использовании в этом смысле не делается различия между аэробным и анаэробным метаболизмом. 

Брожение  часто используется для приготовления или сохранения пищи. Говоря о брожении, обычно имеют в виду брожение сахара (превращение его в спирт) с использованием дрожжей, но, к примеру, при производстве йогурта используются другие виды брожения. 

Использование брожения человеком обычно предполагает применение определенных видов и штаммов микроорганизмов. Вина иногда улучшают с использованием процесса взаимного брожения. 

Продукты  брожения — это по сути отходы, получившиеся во время превращения пирувата с  целью регенерации NAD+ в отсутствие кислорода. Стандартные примеры продуктов брожения — этанол (питьевой спирт), молочная кислота, водород и углекислый газ. Однако продукты брожения могут быть более экзотическими, такими как масляная кислота, ацетон, пропионовая кислота, 2,3-бутандиол и др. 
 
 
 
 
 
 
 
 
 
 
 

Основные  типы брожения 

Спиртовое брожение (осуществляется дрожжами и некоторыми видами бактерий), в ходе него пируват расщепляется на этанол и двуокись углерода. Из одной молекулы глюкозы в результате получается две молекулы питьевого спирта (этанола) и две молекулы углекислого газа. Этот вид брожения очень важен в производстве хлеба, пивоварении, виноделии и винокурении. Если в закваске высока концентрация пектина, может также производиться небольшое количество метанола. Обычно используется только один из продуктов; в производстве хлеба алкоголь улетучивается при выпечке, а в производстве алкоголя двуокись углерода обычно уходит в атмосферу, хотя в последнее время её стараются утилизировать.
Молочнокислое брожение, в ходе которого пируват  восстанавливается до молочной кислоты, осуществляют молочнокислые бактерии и другие организмы. При сбраживании молока молочнокислые бактерии преобразуют лактозу в молочную кислоту, превращая молоко в кисломолочные продукты (йогурт, простокваша и др.); молочная кислота придаёт этим продуктам кисловатый вкус. 

Молочнокислое брожение происходит также в мышцах животных, когда потребность в  энергии выше, чем обеспечиваемая дыханием, и кровь не успевает доставлять кислород. 

Обжигающие  ощущения в мышцах во время тяжелых  физических упражнений соотносятся с получением молочной кислоты и сдвигом к анаэробному гликолизу, поскольку кислород преобразуется в двуокись углерода аэробным гликолизом быстрее, чем организм восполняет запас кислорода; а болезненность в мышцах после физических упражнений вызвана микротравмами мышечных волокон. Организм переходит к этому менее эффективному, но более скоростному методу производства АТФ в условиях недостатка кислорода. Затем печень избавляется от излишнего лактата, преобразуя его обратно в важное промежуточное звено гликолиза — пируват. 

Считается, что анаэробный гликолиз был первым источником энергии для общих  предков всех живых организмов до того, как концентрация кислорода  в атмосфере стала достаточно высокой, и поэтому эта форма  генерации энергии в клетках — более древняя. За очень редкими исключениями она существует и у всех ныне живущих клеток.
Уксуснокислое брожение осуществляют многие бактерии. Уксус (уксусная кислота) — прямой результат  бактериальной ферментации. При  мариновании продуктов уксусная кислота предохраняет пищу от болезнетворных и вызывающих гниение бактерий. 
 
 
 

История спиртового брожения 

Сбраживание сахаров известно с глубокой древности. В течение столетий пивовары и  виноделы использовали способность  некоторых дрожжей вызывать спиртовое брожение, в результате которого сахара превращаются в спирт. 

Приготовление спиртных напитков, основанных на брожении спиртовом, было известно людям в  глубокой древности. Однако суть процесса превращения сахаров в спирт  выяснена только в сер. 19 в. Химическое уравнение брожения спиртового дано французскими химиками А.Лавуазье (1789) и Ж.Гей-Люссаком (1815). Разноречивые мнения о сущности брожения привели к длительному научному спору между Л. Пастером и Ю. Либихом. Согласно химической теории Ю. Либиха молекулярные колебания белковых веществ передаются сахару, расшатывают его молекулу, превращая ее в молекулы спирта и диоксида углерода. Убедительные опыты Пастера в 1857 с использованием микроскопических организмов — дрожжей отвергли несостоятельную теорию Либиха. Пастером была защищена биологическая теория, определяющая брожение как результат анаэробного обмена веществ дрожжей. Работами С. П. Костычева и В. И. Палладина доказано, что анаэробный распад молекулы сахара является начальным этапом кислородного дыхания. В 1871 рус. врач-биохимик М. М. Манассеина первая указала на возможность бесклеточного брожения спиртового, а в 1897 братьями Э. и Т. Бухнер была раскрыта ферментативная сущность реакций процесса благодаря использованию простого метода получения бесклеточного дрожжевого сока, разработанного русским биохимиком А.Н. Лебедевым. Процесс брожения спиртового исследовался многими выдающимися отечественными и зарубежными биохимиками и физиологами: Л. А. Ивановым, А. Гарденом, К. Нёйбергом, Г. Эмбденом, О. Мейергофом, Я. Парнасом и др. Первый значительный шаг в изучении химизма брожения спиртового был сделан Ивановым и Лебедевым, доказавшими участие фосфатов в брожении сахарных растворов. Большое значение имело открытие Иванова, доказавшего, что анаэробному распаду при брожении подвергается не свободная молекула гексозы, а предварительно образующийся ее фосфорный эфир. Последующее изучение механизма Б. с. показало, что первым этапом химических реакций является гликолиз, объединяющий реакции, протекающие в живых клетках до образования пировиноградной кислоты. Эти реакции осуществляются с тем же запасом энергии и тем же ферментативным путем как в анаэробных (спиртовое брожение), так и в аэробных условиях (дыхание).  
 
 
 
 
 
 
 

Спиртовое брожение 

Спиртовое брожение - это процесс окисления углеводов, в результате которого образуются этиловый спирт, углекислота и выделяется энергия. 

Брожение  производят главным образом дрожжи, а также некоторые бактерии и  грибы. В различных странах для  получения спирта используют различные микроорганизмы.  

Например, в Европе используют в основном дрожжи из рода Saccharomyces,
в Южной  Америке - бактерии Pseudomonas lindneri,
в Азии - мукоровые грибы. 

Спиртовое брожение вызывают дрожжи, а также  некоторые плесневые грибы и  бактерии. Типичное брожение с высоким выходом спирта наблюдается в результате жизнедеятельности культурных дрожжей (сахаромицес).  

В промышленном производстве спирта используют различные  материалы: пшеницу, рожь, ячмень, кукурузу, картофель, свеклу, древесные опилки, солому и т. Клетчатку соломы и древесных опилок предварительно подвергают кисличному гидролизу, а крахмал зерновых злаков - осахариванию солодом. 

Химизм  спиртового брожении зависит от характера  субстрата, концентрации в нем сахара, реакции среды (pH), вида и расы дрожжей, окружающей температуры, Наибольший выход спирта отмечают в результате аппаратного брожения.  

В бродильной промышленности используются дрожжи верхового  и низшего брожения. Верховое брожение лучше развивается при температуре 18-30°; протекает бурно, с обильным выделением углекислого газа, пенообразованием и появлением пленки на поверхности субстрата.  

Дрожжи  верхового брожения применяют в  спиртовой промышленности и хлебопечении. Низовое брожение совершается спокойно; его используют в пивоварении; развивается оно при низкой температуре (4 - 10°) с постепенным просветлением субстрата. Дрожжи обычно оседают на дно сосуда 

Сбраживаться  могут лишь углеводы, и притом весьма избирательно. Дрожжи сбраживают только некоторые 6-углеродные сахара (глюкозу, фруктозу, маннозу). 

Реакция спиртового брожения подобна гликолизу. Расхождение начинается только после  образования пирувата. Конечный этап гликолиза заменяется двумя ферментативными  реакциями. Сначала пируват подвергается декарбоксилированию, продуктом которого является ацетальдегид. Данная реакция происходит при участии пируватдекарбоксилазы, ТПФ и ионов магния.

После ацетальдегид восстанавливается водородом, который отщепляется от кофермента НАДН. При этом ацетальдегид восстанавливается до этанола. Собственно, цель спиртового брожения — это окисления NADH, чтобы он мог снова принять участие в гликолизе. Катализатором является алкогольдегидрогеназа. 

 

Таким образом, продуктами спиртового брожения являются этанол и CO2, а не молочная кислота, как в молочнокислом брожении. 

В результате получается реакция: 

    C6H12O6 - > 2C2H5OH + 2CO2 + 23,5?104 дж
глюкоза - > этиловый спирт + углекислота + энергия 

Процесс спиртового брожения - многоступенчатый, состоящий из цепи химических реакций. Превращения глюкозы до образования пировиноградной кислоты происходят так же, как и при дыхании. Эти реакции происходят без участия кислорода (анаэробно). Далее пути дыхания и брожения расходятся. 

При спиртовом  брожении пировиноградная кислота  превращается в конечном итоге в спирт и углекислоту. Эти реакции протекают в две стадии. Сначала от пирувата отщепляется СО2 и образуется уксусный альдегид; затем уксусный альдегид присоединяет водород, восстанавливаясь в этиловый спирт. Все реакции катализируются ферментами. В восстановлении альдегида участвует НАД·H2. 

Обычно  при спиртовом брожении, кроме  главных продуктов, образуются побочные. Они довольно разнообразны, но присутствуют в небольшом количестве: амиловый, бутиловый и другие спирты, смесь  которых называется сивушным маслом - соединение, от котерого зависит специфический аромат вина. Образование побочных веществ связано с тем, что превращение глюкозы частично идет другими путями. 

Спиртовое брожение протекает обычно при pH 3-6. Если его проводить в щелочной среде, например в присутствии NaHCO3, также происходит накопление в сбраживаемом растворе глицерина. Оказалось, что в щелочных условиях ацетальдегид не может акцептировать электроны, поскольку в этих условиях он участвует в реакции дисмутации с образованием уксусной кислоты и этилового спирта. Акцептором электронов, как и в предыдущем случае, служит фосфодиоксиацетон. Процесс брожения в щелочной среде можно представить в виде следующего уравнения: 

2C6H12O6 ® 2C3H8O 3+ CH3-COOH+ CH3-CH2OH+ 2CO2.
Глюкоза    глицерин  уксусная кислота этиловый спирт 

биологический смысл спиртового брожения заключается в том, что образуется определенное количество энергии, которая запасается в форме АТФ, а затем расходуется на все жизненно необходимые процессы клетки. 

Процесс молочнокислого брожения имеет большое сходство со спиртовым брожением. Отличие заключается лишь в том, что при молочнокислом брожении пировиноградная кислота не декарбоксилируется, а, как и при гликолизе в животных тканях, восстанавливается при участии ЛДГ за счет водорода НАДН. 

Известны 2 группы молочно-кислых бактерий. Бактерии одной группы в процессе брожения углеводов образуют только молочную кислоту, а бактерии другой из каждой молекулы глюкозы «производят» по одной  молекуле молочной кислоты, этанола и СО2. 

Существуют  и другие виды брожения, конечными  продуктами которых могут являться пропионовая, масляная и янтарная кислоты, а также другие соединения. 

 
 

Этапы  брожения 

Последовательность  и взаимосвязь отдельных реакций, протекающих на промежуточных этапах брожения, схематически представлена ниже (молекула глюкозы для простоты изображена в виде цепи). 

1. Фосфорилирование D-глюкозы за счет АТФ с образованием глюкозо-6-фосфата. Эта первая реакция гликолиза катализируется тексокиназой. В клетке количество свободной D-глюкозы сравнительно не велико; большая ее часть находится в фосфорилированной форме:
 АТФ  + D-глюкоза - АДФ + D-глюкозо-б-фосфат.
 
2.  Превращение D-глюкозо-б-фосфата во фруктозо-6-фосфат в результате реакции изомеризации, катализируемой фосфогексозоизомеразой:
D-глюкозо-б-фосфат # D-фруктозо-б-фосфат. 

3.  Фосфорилирование D-фурктозо-б-фосфата путем присоединения
еще одного остатка фосфорной кислоты с  образованием фруктозо-1,6-дифосфата. В  этой второй „пусковой" реакции  используется еще одна молекула АТФ при участии фермента фосфофруктокиназы. Доказано, что суммарная скорость гликолиза лимитируется именно
этой  реакцией, катализируемой фосфофруктокиназой:
 АТФ  + D-фруктозо-б-фосфат -> АДФ + О-фруктозо-1, 6-дифосфат. 

4.  Расщепление фруктозо-1, 6-дифосфата на 2 фосфотриозы: глицеральдегид-3-фосфат и диоксиацетонфосфат. Реакция катализируется альдолазой:
0-фруктозо-1, 6-дифосфат «^диоксиацетонфосфат + D-глицеральдегид-3-фосфат. 

5.  В последующие реакции гликолиза может непосредственно включаться только одна из двух образующихся фосфотриоз, а именно глицеральдегид-3-фосфат. Однако и диоксиацетонфосфат благодаря присутствию в клетке специфического фермента триозофосфатизомеразы полностью преобразуется в глицеральдегид-3-фосфат. В результате этой реакции обеспечивается полное использование глюкозы в энергетическом обмене клетки:
 диоксиацетонфосфат  «± D-глицеральдегид-З-фосфат.
 
6.  Окисление глицеральдегид-3-фосфата до 1,3-дифосфоглицерата. Реакция катализируется специфической дегидрогеназой триозофосфата (глицеральдегид-3-фосфат-дегидрогеназой) и называется реакцией гликолитического окисления-восстановления. Окисление глицеральдегид-3-фосфата, катализируемого дегидрогеназой, является единственный окислительным этапом на всем протяжении гликолиза. Однако кислород в этой реакции не участвует. Требуется лишь присутствие окислителя НАД + , который при этом восстанавливается до НАД • Н (символом НАД обозначается окислительно-восстановительный кофермент никотинамид-адениндинуклеотид, НАД+ — его окисленная форма, НАД-Н— восстановленная):
D-глицеральдегид-З-фосфат  + НАД+  + Фн -> 1,3-дифосфоглицерат +НАДН + Н +
 
7.  Перенос фосфатной группы от 1,3-дифосфоглицерата на АДФ. Под действием двух ферментов (глицеральдегид-3-фосфат-дегидрогеназы и фосфоглицераткиназы) энергия, высвобождающаяся при окислении альдегидной группы до карбоксильной, запасается в форме энергии фосфатных связей АТФ.
1,3-Дифосфоглицерат  + АДФ # 3-фосфоглицерат + АТФ. 
Глицеральдегид-3-фосфат + Фн + АДФ + НАД+ <* 3-фосфоглицерат + + АТФ + НАД-Н + Н+.  (к реакциям 1 и 3) 

8.  Превращение 3-фосфоглицерата в 2-фосфоглицерат катализируется фосфоглицеромутазой:
3-фосфоглицерат  <± 2-фосфоглицерат. 

9.  Дегидратация 2-фосфоглицерата с образованием фосфоенолпирувата катализируется енолазой:
2-фосфоглицерат  # фосфоенолпируват + N20.
 
10.  Перенос фосфатной группы от фосфоенолпирувата на,АДФ с образованием пирувата и АТФ катализируется пируваткиназой (АТФ:
 пируват-фосфотрансферазой):
 фосфоенолпируват + АДФ ^ пируват + АТФ. Образование пировиноградной кислоты — поворотный этап анаэробного расщепления сахара, являющийся общим для дыхания, гликолиза и брожения всех видов. Основное значение гликолиза состоит в перестройке структуры молекулы глюкозы в высокоактивный и лабильный в химическом отношении пируват, что облегчает биохимическое превращение исходного субстрата на последующих этапах окислительно-восстановительных процессов.
 
11.  Если кислород отсутствует, то дальнейшие превращения пировиноградной кислоты происходят анаэробным путем, в процессе брожения (молочнокислого, спиртового и др.). При брожении последний этап гликолиза, катализируемого лактатдегидрогеназой, заменен двумя др. ферментативными реакциями, при участии соответственно пируват-декарбоксилазы и алкогольдегидрогеназы. В результате этих реакций образуется этиловый спирт — конечный продукт спиртового брожения.
 А.  Пируват -+> Ацетальдегид + СO2 (необратимая  реакция). Б. Ацетальдегид + НАД-Н  + Н+ «± Этанол + НАД+.
 Суммарное  уравнение спиртового брожения:
С6Н1206 + 2Фн + 2АДФ -> 2С,Н5ОН + 2СO2 + + 2АТФ.
При введении специфическихингибиторов формы брожения спиртового изменяются.
Вторая  форма брожения Нёйберга. Для получения  глицерина в сбраживаемую среду  вводят бисульфит натрия, который  связывает ацетальдегид и предотвращает этим реакцию восстановления его до спирта. Водород восстановленного НАД- Н2 в этом случае используется на восстановление фосфоглицеринового альдегида до глицерина (реакции 4 и 5). Таким образом, при брожении сульфитированного виноградного сусла происходит накопление в виноматериалах глицерина и ацетальдегида в виде бисульфитного производного. Эту форму брожения называют глицеропировиноградным брожением. Третья форма брожения Нёйберга. При щелочной реакции среды ход брожения изменяется: половина молекул ацетальдегида окисляется до уксусной кислоты, другая — восстанавливается до этилового спирта. Происходит подкисление субстрата.
 В  процессе брожения спиртового  в отсутствие кислорода воздуха  высвобождается лишь незначительная  часть энергии (117кДж), потенциально заложенной в одном моле глюкозы (2817кДж), тогда как при дыхании — полном окислении глюкозы до СO2 и Н20 — значительно больше (1504кДж). Доступ кислорода, обеспечивающий более эффективное в энергетическом отношении аэробное дыхание, предохраняет клетки от излишних трат веществ, происходящих в процессе анаэробиоза. Подобное действие кислорода, выражающееся в угнетении брожения дыханием в значительном снижении потребления глюкозы, названо Пастера эффектом. Явление торможения дыхания дрожжей и активация брожения при аэрации получило название Крэбтри эффекта.
 При  брожении спиртовом кроме основных  продуктов распада углеводов  — этилового спирта и углекислого  газа — образуются вторичные  продукты (глицерин, янтарная кислота,  ацетальдегид, уксусная, пировиноградная, молочная и лимонная кислоты, 2,3-бутиленгликолъ, ацетоин, диацетил, эфиры, высшие спирты). Исходным продуктом образования большинства вторичных продуктов является ацетальдегид, который в дозе 400мг/дм3 угнетает брожение, а при более высоких его дозах дрожжи теряют жизнеспособность. Поэтому для дрожжей является физиологической необходимостью превращать ацетальдегид в более безвредные продукты — в этиловый спирт и вторичные продукты, играющие важную роль в обмене веществ дрожжевой клетки и обогащающие вина полезными компонентами, обусловливающими их букет и вкус. При брожении дрожжи выделяют в среду сульфгидрильные SH-соединения (глютатион, цистеин), снижающие редокспотенциал Eh, являющийся важным показателем технологического процесса, т.к. развитие вина, начиная с выдержки и кончая созреванием и старением, связано в основном с течением окислительно-восстановительных реакций. Количество таких соединений обусловлено особенностями расы дрожжей и условиями брожения. Многочисленные исследования окислительно-восстановительных процессов и редокссистем сусла и вина проведены А. К. Родопуло. На брожение спиртовое, кроме виноделия, основано пивоварение, производство этилового спирта, глицерина, приготовление теста в хлебопечении. 
 
 

Микроорганизмы, осуществляющие спиртовое брожение 

Накопление  этилового спирта в среде в  анаэробных условиях наблюдается у  разных групп эубактерий и группы эукариотных микроорганизмов —  дрожжей. 

Эубактерии 

Способность осуществлять в анаэробных условиях спиртовое брожение по пути, описанному в предыдущем разделе, присуща некоторым эубактериям, принадлежащим к разным таксономическим группам, например Sarcina ventriculi, Erwinia amylovora. 

S. ventriculi относится к группе грамположительных  анаэробных кокков. Клетки неподвижные; делятся в трех плоскостях, поэтому в культуре часто образуют пакеты, состоящие из 64 и более клеток. Веществом, связывающим клетки в пакетах, служит целлюлоза. Описана способность образовывать эндоспоры. Аэротолерантный анаэроб. Единственный способ получения энергии — сбраживание Сахаров. Потребность в питательных веществах довольно высока (многочисленные аминокислоты и ряд витаминов). 

E. amylovora относится к группе энтеробактерий. Это грамотрицательные подвижные  палочки. Особенностью вида является  его патогенность для растений. Факультативный анаэроб. В аэробных условиях получает энергию в процессе дыхания. 

Помимо  этилового спирта и CO2 в качестве продуктов брожения S. ventriculi в среде накапливается уксусная кислота и выделяется молекулярный водород, у E. amylovora накапливается молочная кислота. Разнообразие конечных продуктов у этих бактерий связано с тем, что пируват, образующийся при сбраживании глюкозы по гликолитическому пути, далее может метаболизироваться различно: восстанавливаться до молочной кислоты; подвергаться декарбоксилированию и последующему восстановлению, как описано в предыдущем разделе; подвергаться ферментативному расщеплению, приводящему к образованию ацетата и др. 

У многих клостридиев и энтеробактерий среди  продуктов брожения обнаруживают этиловый спирт, но путь его образования отличен от описанного в предыдущем разделе. Сбраживание сахаров до пировиноградной кислоты происходит по гликолитическому пути, дальнейшее же превращение пирувата идет не через пируватдекарбоксилазу. У названных групп бактерий пируват подвергается расщеплению, приводящему к образованию ацетил-КоА. Реакция катализируется пируватдегидрогеназой. Ацетил-КоА затем восстанавливается до ацетальдегида:
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.