На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


курсовая работа Роль кислорода в природе и технике

Информация:

Тип работы: курсовая работа. Добавлен: 28.10.2012. Сдан: 2012. Страниц: 16. Уникальность по antiplagiat.ru: < 30%

Описание (план):


           Министерство  образования  Российской  Федерации.
                    Министерство образования Московской Области
                        Кафедра химии 
         
         
         
         
         

Курсовая  работа по химии на тему: 

«Роль кислорода в природе и технике» 
 
 
 
 
 
 
 
 
 
 

                  Выполнил:
                  Студент 4  курса
              Биолого-химического  факультета
                                                                        Руководитель:
                                                                         
 
 
 
 
 
 

                2010год 
         
         
         
         

             План

I.Введение

1.1 Открытие элемента кислорода…………………………….4

II. Возникновение кислорода……………………….………6

III. Нахождение кислорода в природе………………..……9

3.1 В составе простых веществ…………………………………9
3.2 В составе сложных веществ…………………...…………10  

IV. Положение в таблице Д.И. Менделеева,
  строение……………………………………………….…….11 

V. Сравнение окислительно-восстановительных свойств и размера ядра кислорода с элементами стоящими с ним в той же подгруппе, группе и периоде………………..….11 

VI. Получение кислорода
6.1 В лаборатории…………………………………………………12
6.2 В промышленности…………………………………………..12
VII Физические свойства……………………………….....14
VIII Химические свойства…………………………..…….15
IX. Кислород в металлургии …………………….………..18
X. Роль кислорода в органическом синтезе
10.1 Cупероксид анион-радикал…………………………………20
10.2 Супероксид калия………………………………………………….…..20
10.3 Реакция дегидрирования………………………………………..……21
10.4 Перекисный эффект  Хараша……………………………………....21
10.5 Взаимодействие с  алкилгалогенидами…………………………....23
10.6 Некоторые окислительно-восстановительные  реакции……..23
10.7 Фермент супероксиддисмутаза…………………………….……..24
XI. Роль кислорода в природе…………………………….26

11.1 Продукты окисления………………………………………………..26

11.2 Кислород в воздухе………………………………………………….27

11.3 Кислород в почве……………………………………………………28

 
11.4 Кислород в воде……………………………………………………29
11.5 Озоновый слой…………………………………………….30
11.6 Химические свойства озона……………………………31
XII. Заключение………………………………………….35 

XIII. Список литературы………………………………..36

I.Введение

1.1 Открытие элемента кислорода

 
             1 августа 1774 года я попытался извлечь воздух из ртутной окалины и нашел, что воздух легко может быть изгнан из нее посредством линзы. Этот воздух не поглощался водой. Каково же было мое изумление, когда я обнаружил, что свеча горит в этом воздухе необычайно ярким пламенем. Тщетно пытался я найти объяснение этому явлению.
Джозеф  Пристли 

     То, что кислород невидим, безвкусен, лишен  запаха, газообразен при обычных  условиях, надолго задержало его  открытие.
     Многие  ученые прошлого догадывались, что  существует вещество со свойствами, которые, как мы теперь знаем, присущи кислороду.
     Изобретатель  подводной лодки К. Дреббель еще  в начале XVII в. выделил кислород, выяснил роль этого газа для дыхания и использовал его в своей подводной лодке. Но работы Дреббеля практически не повлияли на развитие химии. Его изобретение носило военный характер, и все, что было так или иначе связано с ним, постарались своевременно засекретить.
     Кислород  открыли почти одновременно два  выдающихся химика второй половины XVIII в. швед Карл Вильгельм Шееле и  англичанин Джозеф Пристли. Шееле получил кислород раньше, но его трактат «О воздухе и огне», содержавший информацию о кислороде, был опубликован позже, чем сообщение об открытии Пристли.
     И все-таки главная фигура в истории  открытия кислорода  не Шееле и  не Пристли. Они открыли новый газ и только. Открыли кислород и до конца дней своих остались ревностными защитниками теории флогистона! Теории некогда полезной, но к концу XVIII в. ставшей уже «кандалами на ногах науки».
     Позже Фридрих Энгельс напишет об этом: «Оба они так и не узнали, что оказалось у них в руках. Элемент, которому суждено было революционизировать химию, пропадал в их руках бесследно... Собственно открывшим кислород, поэтому остается Лавуазье, а не те двое, которые только описали кислород, даже не догадываясь, что они описывают».
     Великий французский химик Антуан Лоран  Лавуазье (тогда еще очень молодой) узнал о кислороде от самого Пристли. Спустя два месяца после открытия «дефлогистонированного воздуха» Пристли  приехал в Париж и подробно рассказал о том, как было сделано это открытие и из каких веществ (ртутная и свинцовая окалины) новый «воздух» выделяется.
     До  встречи с Пристли Лавуазье не знал, что в горении и дыхании  принимает участие только часть  воздуха. Теперь он по-новому поставил начатые двумя годами раньше исследования горения. Для них характерен скрупулезный количественный подход: все, что можно, взвешивалось или как-либо иначе измерялось.
     Лавуазье  наблюдал образование красных чешуек «ртутной окалины» и уменьшение объема воздуха при нагревании ртути в запаянной реторте. В другой реторте, применив высокотемпературный нагрев, он разложил полученные в предыдущем опыте 2,7  С «ртутной окалины» и получил 2,5  С ртути и 8 кубических дюймов того самого газа, о котором рассказывал Пристли. В первом опыте, в котором часть ртути была превращена в окалину, было «потеряно» как раз 8 кубических дюймов воздуха, а остаток его стал «азотом» – не жизненным, не поддерживающим ни дыхания, ни горения. Газ, выделенный при разложении окалины, проявлял противоположные свойства, и потому Лавуазье вначале назвал его «жизненным газом». Лавуазье выяснил сущность горения. И надобность в флогистоне – «огненной материи», якобы выделяющейся при сгорании любых горючих, отпала.
     Кислородная теория горения пришла на смену теории флогистона. За два века, прошедших со времени открытия, теория Лавуазье не только не была опровергнута, но еще более укрепилась.
     Это не значит, конечно, что об элементе №8 современной науке известно абсолютно  все. 
 
 

II. Возникновение кислорода
Кислород – 8-й элемент Периодической таблицы (заряд ядра 8), химический символ – O, относительная атомная масса (атомный вес) 16. Валентность кислорода в соединениях равна двум, наиболее распространенная степень окисления -2. Молекула кислорода О2 , молекулярная масса (молекулярный вес) 32 а.е.м. Молярная масса 32 г/моль. Мы не случайно начинаем изучение химии важнейших элементов с кислорода. Кислород – действительно важнейший элемент. Его химия тесно связана практически со всеми элементами Периодической системы, поскольку с каждым из них кислород образует те или иные соединения. Исключение составляют только легкие инертные газы – гелий, неон, аргон. Есть и еще одна важная причина. Кислород играет исключительную роль в существовании на Земле жизни и всей человеческой цивилизации. На поверхности планеты – в земной коре – связанный кислород является самым распространенным элементом. В составе минералов, в виде соединений с другими элементами он составляет 47 % от массы земной коры! В атмосфере Земли кислород находится в свободном (не связанном) состоянии: здесь его 21 % по объему или 23 % по массе. Толщина земной атмосферы составляет несколько сотен километров. Разумеется, уже в 100 км от поверхности Земли атмосфера очень разрежена, тем не менее, ее состав определяется с помощью спутников. Если взять глобус диаметром 35 см и представить вокруг него двухсантиметровый слой, то мы получим некоторое понятие о масштабах земной атмосферы. Ее объем составляет более чем 4·1018 м3. Огромное количество кислорода (86 - 89 % по массе с учетом растворенных в воде солей) содержит гидросфера Земли – моря и океаны. Преобладание кислорода среди других элементов в атмосфере и земной коре нашей планеты не может оказаться случайным. Вероятно, это явление связано с возникновением и развитием жизни. В атмосфере молодой Земли кислорода практически не было. Основная масса первичной атмосферы приходилась на диоксид углерода CO2. Оставшуюся часть составляли газы, которые и сейчас выделяются из недр при вулканической деятельности. Главным образом это пары воды (Н2О), хлористый водород (HCl), монооксид углерода (СО), азот (N2), сероводород (H2S) и другие.
Основная масса  кислорода в атмосфере планеты  возникла только после появления  на Земле первых фотосинтезирующих  одноклеточных организмов – прокариот, известных под названием сине-зеленые водоросли. Процесс этот начался около 2 млрд. лет тому назад (см. рис. 6-1). Под действием солнечного света (отсюда название – фотосинтез) прокариоты усваивали из углекислого газа углерод и кислород. Из воды они усваивали только водород, одновременно выделяя в атмосферу свободный кислород в качестве побочного продукта жизнедеятельности. Прокариоты не нуждались в свободном кислороде – такой тип бескислородного "дыхания" называется анаэробным. Возможно, кислород нужен был прокариотам и как средство борьбы с анаэробными бактериями-конкурентами. Кислород накапливался в атмосфере и реагировал с элементами и их соединениями, находящимися на поверхности и в атмосфере молодой Земли.

Рис. 6-1. Одна из гипотез возникновения современной  атмосферы Земли. Обратите внимание на связь между изменением состава  атмосферы и сменой биологических  эпох. (По книге П. Эткинса "Молекулы"). Таким образом, весьма ценный для нас с вами кислород, которым мы дышим и без которого не в состоянии прожить и нескольких минут, когда-то был загрязняющим веществом в атмосфере. Это грандиозное "загрязнение" атмосферы кислородом оставило свой след в геологическом строении Земли. Когда выделяемый прокариотами кислород окислил находящееся на поверхности планеты железо, Земля во многих местах покрылась красноватой ржавчиной - оксидами железа. Именно из оксидов железа состоят железные руды. Их мощные залежи и сегодня напоминают об этой эпохе. Постепенно кислорода стало в атмосфере так много, что анаэробные бактерии уступили место другим существам – с аэробным (кислородным) типом дыхания. Аэробные организмы используют для дыхания не СО2, а молекулярный кислород. Вплоть до нашего времени длится геологическая эпоха, когда огромные количества кислорода постоянно расходуются на дыхание живых существ и горение. Интересно, что только теперь, спустя 2 миллиарда лет, совершенно точно выяснился "геологический смысл жизни" каждой отдельно взятой сине-зеленой водоросли, жившей в то время. Это живое существо должно было родиться здоровым, прожить как можно более долгую жизнь (чтобы выделить в атмосферу как можно больше кислорода), оставить после себя здоровое, полноценное потомство. Оно не должно было "обижать" других прокариот, чтобы и те могли выполнить такую же миссию, отведенную им природой. Иными словами, смысл жизни заключается в том, чтобы жить. Вероятно, это правило действует и поныне для всех живых существ. Не пройдет и одного-двух миллиардов лет, как выяснится "геологический смысл жизни" человечества. В чем он, этот смысл? Попробуйте подумать на эту тему (см. задачу 6.22 в конце этой главы). Но вернемся к атмосфере Земли. Каким же образом в нашу эпоху восполняются потери кислорода в природе? Это происходит благодаря растениям, которые сохранили способность под действием солнечных лучей (фотосинтетически) превращать углекислый газ и воду в кислород и углеводы (строительный материал клеток растений). Например, процесс образования в растениях углевода крахмала можно записать таким уравнением (здесь n – некое целое число, достаточно большое):

Вспомните предыдущую главу, где мы рассчитали потери кислорода  при работе сравнительно маломощного автомобильного двигателя, и вы поймете, почему лесные массивы зачастую называют легкими планеты. Очень важную роль играют и водоросли океана. Все растения Земли в течение года создают около 300 млрд. т кислорода. Таким образом, все блага и само существование человеческой цивилизации целиком зависят от зеленых растений.

III. Нахождение кислорода в природе

.
     Кислород  самый распространенный элемент  на нашей планете. Он входит в состав воды (88,9%), а ведь она покрывает  2/з поверхности земного шара, образуя его водную оболочку гидросферу. Кислород вторая по количеству и первая по значению для жизни составная часть воздушной оболочки Земли атмосферы, где на его долю приходится 21% (по объему) и 23,15% (по массе). Кислород входит в состав многочисленных минералов твердой оболочки земной коры литосферы: из каждых 100 атомов земной коры на долю кислорода приходится 58 атомов.
     Как вы уже знаете, обычный кислород существует в форме О2. Это газ без цвета, запаха и вкуса. В жидком состоянии имеет светло-голубую окраску, в твердом синюю. В воде газообразный кислород растворим лучше, чем азот и водород. 

3.1 В составе простых веществ.
     Кислород  взаимодействует почти со всеми  простыми веществами, кроме галогенов, благородных газов, золота и платиновых металлов. Например, энергично реагирует с металлами: щелочными, образуя оксиды М2О и пер оксиды М2О2; с железом, образуя железную окалину Ге3О4; с алюминием, образуя оксид А12О3.
     Реакции неметаллов с кислородом протекают  очень часто с выделением большого количества тепла и сопровождаются воспламенением реакции горения. Вспомните горение серы с образованием SО2, фосфора с образованием Р2О5 или угля с образованием СО2.
     Почти все реакции с участием кислорода  экзотермические. Исключение составляет взаимодействие азота с кислородом: это эндотермическая реакция, которая протекает при температуре выше 1200 °С или при электрическом разряде:
N2 + O                 2NO –Q  
 

3.2 В составе сложных веществ
     Кислород  энергично окисляет не только простые, но и сложные вещества, при этом образуется оксиды элементов, из которых они построены.
СН4  + 2О2 = 2Н2О + СО2

          Метан

2S + ЗО2 = 2SО2 + 2Н2О
     Высокая окислительная способность кислорода  лежит в основе горения всех видов  топлива.
     Кислород  участвует и в процессах медленного окисления различных веществ при обычной температуре. Эти процессы не менее важны, чем реакции горения. Так, медленное окисление пищи в нашем организме является источником энергии, за счет которой живет организм. Кислород для этой цели доставляется гемоглобином крови, который способен образовывать с ним непрочное соединение уже при комнатной температуре. Окисленный гемоглобин оксигемоглобин доставляет во все ткани и клетки организма кислород, который окисляет белки, жиры и углеводы (составные части пищи), образуя при этом углекислый газ и воду и освобождая энергию, необходимую для деятельности организма.
     Исключительно важна роль кислорода в процессе дыхания человека и животных.
     Растения  также поглощают атмосферный  кислород. Но если в темноте идет только процесс поглощения растениями кислорода, то на свету протекает еще один противоположный ему процесс — фотосинтез, в результате которого растения поглощают углекислый газ и выделяют кислород. Так как процесс фотосинтеза идет более интенсивно, то в итоге на свету растения выделяют гораздо больше кислорода, чем поглощают его при дыхании. Таким образом, содержание свободного кислорода Земли сохраняется благодаря жизнедеятельности зеленых растений. 
 
 
 
 
 

IV. Положение в таблице Д.И. Менделеева, строение. 

     В центре атома кислорода находится ядро с зарядом +8, ядро состоит из 8 протонов и (16-8)= 8 нейтронов вокруг ядра вращается 12 электронов.
      О-О;
      О    О
    1 S2            
    2 S2 P4              
 
     Для завершения внешнего энергетического  уровня кислороду не хватает двух электронов. Энергично принимая их кислород проявляет степень окисления, равную –2. Однако в соединениях кислорода со фтором, общая электронная пара смещена по фтору как к более электроотрицательному элементу, В этом случае степень окисления кислорода равна + 2, а фтора + 2 . в пер оксиде водорода H2Oи его производных степеней окисления равна – 1. В соединениях со всеми другими электронами окислительность кислорода отрицательна и равна – 2. 
 

V. Сравнение окислительно-восстановительных свойств и размера ядра кислорода с элементами стоящими с ним в той же подгруппе, группе и периоде. 

     В своей группе у кислорода самая  маленькая орбита. Принять электроны  ему легче всех, отдать труднее. Самая  маленькая орбита у него потому, что он стоит во 2 периоде и  следовательно у него меньше всех электронных слоев. Принять недостающих электрон легче потому что, у него лучше связь атома с электроном, чем у остальных элементов этой группы. И отдать труднее потому что, тоже связь с электрона с ядром на последнем слое сильней, чем у остальных элементов этой группы.
     У кислорода ядро меньше чем у Li, Be, B, C, N, но больше чем у F, потому что число элекроных слоев у них одинаковы, а количество электронов на последнем слое разное. У кислорода электроны больше чем у Li, Be, B, C, N значит связь электронов с ядром больше и радиус меньше. У кислорода восстановительные свойства больше, чем у Li, Be, B, C, N и принять недостающий электрон ему легче, по меньше чем у фтора, которому принять недостающий электрон еще легче, чем кислороду.  

VI. Получение кислорода  

6.1 В лаборатории
     Кислород  в лаборатории получают путем  разложения пероксида водорода (H2O2) в присутствии катализатора- диоксида марганца (Mn O2) , а также разложением перманганата калия (KMn O4) при нагревание.
 
6.2 В промышленности 

              Так как горением в  таком газе можно  получить очень высокие  температуры, полезные во многих... применениях, то быть может, что  придет время, когда  указанным путем  станут на заводах  и вообще для промышленности обогащать воздух кислородом.
Д.И. Менделеев 

     Попытки создать более или менее мощную кислородную промышленность предпринимались  еще в прошлом веке в. многих странах. Но от идеи до технического воплощения часто лежит «дистанция; огромного  размера»...
     В Советском Союзе особенно быстрое  развитие кислородной промышленности началось в годы Великой Отечественной войны, после изобретения академиком Л.П.Капицей турбодетандера и создания мощных воздухоразделительных установок.
     Еще Карл Шееле получал кислород, по меньшей мере, пятью способами: из окиси ртути, сурика, селитры, азотной кислоты и пиролюзита. На подводных лодках и сейчас получают кислород, разлагая богатые этим элементом хлораты и перхлораты. В любой школьной лаборатории демонстрируют опыт – разложение воды на кислород и водород электролизом. Но ни один из этих способов не может удовлетворить потребности промышленности в кислороде.
      Энергетически проще всего получить элемент  №8 из воздуха, поскольку воздух –  не соединение, и разделить воздух не так уж трудно. Температуры кипения  азота и кислорода отличаются (при атмосферном давлении) на 12,8°C. Следовательно, жидкий воздух можно разделить на компоненты в ректификационных колоннах так же, как делят, например, нефть. Но чтобы превратить воздух в жидкость, его нужно охладить до минус 196°C. Можно сказать, что проблема получения кислорода – это проблема получения холода.
     Чтобы получать холод с помощью обыкновенного  воздуха, последний нужно сжать, а затем дать ему расшириться  и при этом заставить его производить  механическую работу. Тогда в соответствии с законами физики воздух обязан охлаждаться. Машины, в которых это происходит, называют детандерами.
     До 1938г. для получения жидкого воздуха  пользовались только поршневыми детандерами. По существу, такой детандер – это  аналог паровой машины, только работает в нем не пар, а сжатый воздух. Чтобы получить жидкий воздух с помощью таких детандеров, нужны были давления порядка 200 атм., причем по неизбежным техническим причинам на разных стадиях процесса давление было не одинаковым: от 45 до 200 атм. КПД установки был немногим выше, чем у паровой машины. Установка получилась сложной, громоздкой, дорогой.
     В конце 30-х годов советский физик  академик П.Л. Капица предложил использовать в качестве детандера турбину. Идея – не новая, ее еще в конце прошлого века высказывал Дж. Рэлей, но к.п.д. «докапицынских» турбин для сжижения воздуха был невысок. Поэтому небольшие турбодетандеры лишь выполняли кое-какую подсобную работу при поршневых детандерах.
     Капица  создал новую конструкцию, которая, по словам изобретателя, была «как бы компромиссом между водяной и паровой турбиной». Главная особенность турбодетандера Капицы в том, что воздух в ней расширяется не только в сопловом аппарате, но и на лопатках рабочего колеса. При этом газ движется от периферии колеса к центру, работая против центробежных сил.
     Такая конструкция турбины позволила  поднять к.п.д. установки с 0,5 до 0,8. И, кроме того, турбодетандер «делает» холод с помощью воздуха, сжатого  всего лишь до нескольких атмосфер. Очевидно, что 6 атм. получить намного проще и дешевле, чем 200. Немаловажно для экономики и то, что энергия, которую отдает расширяющийся воздух, не пропадает напрасно, она используется для вращения ротора генератора электрического тока.
     Современные установки для разделения воздуха, в которых холод получают с помощью турбодетандеров, дают промышленности, прежде всего металлургии и химии, сотни тысяч кубометров газообразного кислорода. Они работают не только у нас, но и во всем мире.
     Первый  опытный образец турбодетандера был невелик. Его ротор восьми сантиметров в диаметре весил всего 250г. Но, как писал П.Л. Капица в 1939г., «экспериментальная эксплуатация этого турбодетандера показала, что он является надежным и очень простым механизмом. Технический к.п.д. получается 0,79...0,83». И этот турбодетандер стал «сердцем» первой установки для получения кислорода новым методом.
     В 1942г. построили подобную, но уже намного  более мощную установку, которая  производила до 200кг жидкого кислорода  в час. В конце 1944г. вводится в  строй самая мощная в мире турбо  кислородная установка, производящая в 6...7 раз больше жидкого кислорода, чем установка старого типа, и при этом занимающая в 3...4 раза меньшую площадь.
     Современный блок разделения воздуха БР-2, в конструкции  которого также использован турбодетандер, мог бы за сутки работы снабдить тремя литрами газообразного кислорода каждого жителя СССР.
     30 апреля 1945 г. Михаил Иванович Калинин  подписал Указ о присвоении  академику П. Л. Капице звания  Героя Социалистического Труда  «за успешную разработку нового  турбинного метода получения кислорода и за создание мощной турбо кислородной установки».
VII Физические свойства
При нормальных условиях кислород это газ без цвета, вкуса и запаха. 1л его имеет массу 1,429 г. Немного тяжелее воздуха. Слабо растворяется в воде (4,9 мл/100г при 0 °C, 2,09 мл/100г при 50 °C) и спирте (2,78 мл/100г при 25 °C). Хорошо растворяется в расплавленном серебре (22 объёма O2 в 1 объёме Ag при 961 °C). Является парамагнетиком. При нагревании газообразного кислорода происходит его обратимая диссоциация на атомы: при 2000 °C — 0,03 %, при 2600 °C — 1 %, 4000 °C — 59 %, 6000 °C — 99,5 %. Жидкий кислород (темп. кипения ?182,98 °C) это бледно-голубая жидкость. Твердый кислород (темп. плавления ?218,79 °C) — синиекристаллы. Известны шесть кристаллических фаз, из которых три существуют при давлении в 1атм.:
    ?-О2 — существует при температуре ниже 23,65 К; ярко-синие кристаллы относятся к моноклинной сингонии. ?-О2 — существует в интервале температур от 23,65 до 43,65 К; бледно-синие кристаллы (при повышении давления цвет переходит в розовый) имеют ромбоэдрическую решётку.
    ?-О2 — существует при температурах от 43,65 до 54,21 К; бледно-синие кристаллы имеюткубическую симметрию.
Ещё три фазы образуются при высоких давлениях:
    ?-О2 интервал температур 20-240 К и давление 6-8 ГПа, оранжевые кристаллы;
    ?-О2 давление от 10 и до 96 ГПа, цвет кристаллов от темно красного до чёрного, моноклинная сингония;
    ?-О2 давление более 96 ГПа, металлическое состояние с характерным металлическим блеском, при низких температурах переходит в сверхпроводящее состояние.
    VIII Химические свойства
Сильный окислитель, взаимодействует практически со всеми элементами, образуя оксиды. Степень окисления ?2. Как правило, реакция окисления протекает с выделением тепла и ускоряется при повышении температуры. Пример реакций, протекающих при комнатной температуре:


Окисляет соединения, которые содержат элементы с не максимальной степенью окисления:

Окисляет большинство органических соединений:
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.