На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


курсовая работа Альтернативные источники энергии

Информация:

Тип работы: курсовая работа. Добавлен: 30.10.2012. Сдан: 2012. Страниц: 45. Уникальность по antiplagiat.ru: < 30%

Описание (план):


     Курсовая  работа
     Альтернативные  источники энергии.
 

АННОТАЦИЯ

    В данной работе рассмотрены общие понятия альтернативных способов получения электрической энергии, разновидности их получения, и приоритеты использования.
В работе использовано: Табл. 2., Рис. 11., Библиограф.: 6 назв. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

СОДЕРЖАНИЕ 
 

 

ВВЕДЕНИЕ

     На  пути широкого внедрения альтернативных источников энергии стоят трудно разрешимые экономические и социальные проблемы. Прежде всего, это высокая капиталоемкость, вызванная необходимостью создания новой техники и технологии. Во-вторых, высокая материалоемкость: создание мощных ПЭС требует, к примеру, огромных количеств металла, бетона и т.д., В-третьих, под некоторые станции требуется значительное отчуждение земли или морской акватории. Кроме того, развитие использования альтернативных источников энергии сдерживается также нехваткой специалистов. Решение этих проблем требует комплексного подхода на национальном и международном уровне, что позволит ускорить их реализацию.
     Рост  цен на традиционные энергоносители (нефть и газ), несмотря на произошедшее в середине 1980-х годов резкое их понижение, возобновится и будет продолжаться по мере исчерпания ресурсов традиционных энергоносителей (относительно нефти последнее может случиться, по некоторым данным, уже через 50-70 лет, т.е. еще до истечения расчетного срока эксплуатации огромного числа уже существующих и строящихся капитальных зданий). Учитывая рост потребностей в нефти и газе многих производственных технологий (прежде всего, быстро развивающейся химической промышленности), использование нефти, нефтепродуктов, а в скором будущем и газа в качестве топлива следует признать бесперспективным. Развитие энергетики на базе угля и кокса сопряжено с неизбежным ухудшением экологической обстановки, т.к. безвредные технологии в данной области требуют чрезмерно больших капиталовложений. Развитие гидроэнергетики будет иметь крайне ограниченные масштабы в силу сложности экологических проблем, возникающих при устройстве ГЭС. Развитие атомной энергетики требует значительных трудовых, материальных затрат и сопряжено с повышенным риском возникновения аварий континентального масштаба (аналогичных Чернобыльской), что предполагает целесообразность постепенного свертывания АЭС вплоть до полного отказа от их использования в энергетике (например, в Швеции, где на АЭС получают до 50% всей энергии, принята государственная программа по свертыванию атомной энергетики к 2010 г.; несмотря на дефицит энергии законодательно запрещено строительство АЭС в Дании); жизненно необходим скорейший переход к получению энергии на основе термоядерного синтеза (по прогнозам отечественных ученых, в промышленных масштабах этот переход может произойти не ранее 2030-х годов). Выработку электроэнергии за счет традиционных методов сжигания топлива следует признать бесперспективным вследствие высокой ресурсоемкости данного способа производства (в среднем, на получение 1 усл. ед. электроэнергии затрачивается более 2.5 усл. ед. сжигаемого топлива.
     Необходим и неизбежен форсированный переход  на широкое использование альтернативных возобновляемых источников энергии: солнца, ветра, грунта, водоемов, биомассы и др. Жизненно необходимы усиленные научные и инженерно-технические разработки в области альтернативной энергетики, наращивание масштабов их внедрения во все сферы жизнедеятельности, т.к. сегодня переориентация энергетики на преобладающее использование возобновляемых источников невозможна в силу низкой экономической эффективности имеющихся технологий: высокой стоимости при небольшом к.п.д. В данной работе рассмотрим основные способы получения и использования альтернативной энергии.
 

1 ОБЩИЕ ПОНЯТИЯ ОБ АЛЬТЕРНАТИВНОЙ ЭНЕРГЕТИКЕ

1.1 Определение альтернативной энергетики

     Альтернативная  энергетика — совокупность перспективных способов получения энергии, которые распространены не так широко, как традиционные, однако представляют интерес из-за выгодности их использования при низком риске причинения вреда экологии района.
     Направления альтернативной энергетики:
      ветроэнергетика (автономные ветрогенераторы, ветрогенераторы работающие параллельно с сетью);
      велиоэнергетика (солнечный водонагреватель, солнечный коллектор, фотоэлектрические элементы);
      альтернативная гидроэнергетика (приливные электростанции, волновые электростанции, мини и микро ГЭС (устанавливаются в основном на малых реках), водопадные электростанции);
      геотермальная энергетика (тепловые электростанции (принцип отбора высокотемпературных грунтовых вод и использования их в цикле), грунтовые теплообменники (принцип отбора тепла от грунта посредством теплообмена);
      космическая энергетика (получение электроэнергии в фотоэлектрических элементах, расположенных на орбите Земли, электроэнергия будет передаваться на землю в форме микроволнового излучения);
      водородная энергетика и сероводородная энергетика (водородные двигатели (для получения механической энергии), топливные элементы (для получения электричества);
      биотопливо (получение биодизеля, получение метана и синтез-газа, получение биогаза).
     Новая тенденция в энергетике, связанная  с производством тепловой и электрической  энергии.
     Альтернативный  источник энергии — способ, устройство или сооружение, позволяющее получать электрическую энергию (или другой требуемый вид энергии) и заменяющий собой традиционные источники энергии, функционирующие на нефти, добываемом природном газе и угле. Цель поиска альтернативных источников энергии — потребность получать её из энергии возобновляемых или практически неисчерпаемых природных ресурсов и явлений. Во внимание может браться также экологичность и экономичность. Классификация источников энергии по способу ее получения представлена в таблице 1.  

Таблица 1 - Классификация источников альтернативной энергии
     Тип источников      Преобразуют в энергию
     Ветряные      движение  воздушных масс
     Геотермальные      тепло планеты
     Солнечные      электромагнитное  излучение солнца
     Гидроэнергетические      движение  воды в реках или морях
     Биотопливные      теплоту сгорания возобновляемого топлива (например, спирта)

1.2 Использование альтернативной энергетики

     На  возобновляемые (альтернативные) источники  энергии приходится всего около 1 % мировой выработки электроэнергии. Речь идет, прежде всего, о геотермальных электростанциях (ГеоТЭС), которые вырабатывают немалую часть электроэнергии в странах Центральной Америки, на Филиппинах, в Исландии; Исландия также являет собой пример страны, где термальные воды широко используются для обогрева, отопления [5].
     Приливные электростанции (ПЭС) пока имеются лишь в нескольких странах — Франции, Великобритании, Канаде, России, Индии, Китае. Солнечные электростанции (СЭС) работают более чем в 30 странах.
     В последнее время многие страны расширяют использование ветроэнергетических установок (ВЭУ). Больше всего их в странах Западной Европы (Дания, ФРГ, Великобритания, Нидерланды), в США, в Индии, Китае. Дания получает 25% энергии из ветра. В качестве топлива в Бразилии и других странах все чаще используют этиловый спирт.
     Перспективы использования возобновляемых источников энергии связаны с их экологической чистотой, низкой стоимостью эксплуатации и ожидаемым топливным дефицитом в традиционной энергетике. По оценкам Европейской комиссии к 2020 году в странах Евросоюза в индустрии возобновляемой энергетики будет создано 2,8 миллионов рабочих мест. Индустрия возобновляемой энергетики будет создавать 1,1 % ВВП [5]. Россия может получать 10% энергии из ветра.
 

2. СПОСОБЫ ПОЛУЧЕНИЕ АЛЬТЕРНАТИВНОЙ  ЭНЕРГИИ

2.1 Солнечные электростанции

     Преобразование  солнечного излучения в механическую или электроэнергию не является современным изобретением. Первая машина, качавшая воду под давлением расширяющегося воздуха, нагретого солнцем, была разработана в 1615 г. во Франции. Аналогичная установка, приводившая в действие печатный станок, демонстрировалась на выставке в Париже в 1879г. До 1950 г, действовало довольно много машин, работавших на солнечной электростанции, мощностью от нескольких ватт до 50 кВт. В большинстве моделей концентрирующие коллекторы использовались для нагрева воды или воздуха до температур порядка нескольких сот градусов. Полученный пар или нагретый воздух применялись затем для совершения механической работы по термодинамическому циклу.
     Из  солнечной энергии методом термодинамического преобразования можно получать электричество практически так же, как и из других источников. Однако солнечное излучение, падающее на Землю, обладает рядом характерных особенностей: низкой плотностью потока энергии, суточной и сезонной цикличностью, зависимостью от погодных условий. Поэтому при термодинамическом преобразовании этой энергии в электрическую следует стремиться к тому, чтобы изменения тепловых режимов не вносили серьезных ограничений в работу системы и не возникало затруднений, связанных с ее использованием. Желательно также, чтобы система допускала изменение производства электроэнергии во времени в соответствии с необходимостью потребления. Следовательно, солнечная электростанция должна иметь аккумулирующее устройство для исключения случайных колебаний режимов эксплуатации или обеспечения необходимого изменения производства энергии во времени. При проектировании солнечных энергетических станций важно правильно оценивать метеорологические факторы. Часто место постройки  солнечной электростанции выбирается исходя лишь из одного критерия: годового числа часов солнечного сияния, при этом нередко пренебрегают другим фактором – облачностью [4]. 
     Термодинамический преобразователь солнечной электростанции должен содержать следующие компоненты:
      систему улавливания падающей радиации;
      приемную систему, преобразующую энергию солнечного излучения в тепло, которое передается теплоносителю;
      систему переноса теплоносителя от приемника к аккумулятору или к одному или нескольким теплообменникам, в которых нагревается рабочее тело;
      тепловой аккумулятор;
      теплообменники, образующие горячий и холодный источники тепловой машины [4].

2.2 Ветряные электростанции

     Ветряная  электростанция - установка, преобразующая  кинетическую энергию ветра в электрическую энергию. Состоит она из ветродвигателя, генератора электрического тока, автоматического устройства управления работой ветродвигателя и генератора, сооружений для их установки и обслуживания.
     Принцип действия ветряных электростанций прост: ветер крутит лопасти ветряка, приводя в движение вал электрогенератора. Генератор в свою очередь вырабатывает электрическую энергию. На период безветрия ветряные электростанции имеют резервный тепловой двигатель. Различают крылатые ветродвигатели с коэффициентом использования энергии ветра до 0,48, карусельные и роторные, с коэффициентом использования не более 0,15 и барабанные. Ветродвигатели применяют в ветряных электростанциях, которые состоят из ветроагрегата, устройства, аккумулирующего энергию или резервирующего мощность, и систем автоматического управления и регулирования режимов работы установки. Различают ветряные энергоустановки специального назначения (насосные или водоподъемные, электрически зарядные, мельничные, водоопреснительные и т.п.) и комплексного применения (ветросиловые и ветряные электростанции). Мощность ветроэнергетических установок - от 10 до 1000 Вт [4]. Принцип действия ветряной электростанции представлен на рис.1.
     Для получения энергии ветра применяют  разные конструкции: многолопастные «ромашки»; винты вроде самолетных пропеллеров с тремя, двумя и даже одной лопастью (тогда у нее есть груз противовес); вертикальные роторы, напоминающие разрезанную вдоль и насажанную на ось бочку; некоторое подобие «вставшего дыбом» вертолетного винта: наружные концы его лопастей загнуты вверх и соединены между собой. Вертикальные конструкции хороши тем, что улавливают ветер любого направления. Остальным приходится разворачиваться по ветру. Производство ветряных электростанций очень дешево, но их мощность мала, и их работа зависит от погоды. К тому же они очень шумны, поэтому крупные ветряные электростанции даже приходится на ночь отключать. Помимо этого, ветряные электростанции создают помехи для воздушного сообщения, и даже для радиоволн. Применение ветряных электростанций вызывает локальное ослабление силы воздушных потоков, мешающее проветриванию промышленных районов и даже влияющее на климат. Наконец, для использования ветряных электростанций необходимы огромные площади много больше, чем для других типов электрогенераторов.

2.3 Приливные  электростанции

     Для выработки электроэнергии электростанции такого типа используют энергию прилива. Первая такая электростанция (Паужетская) 
мощностью 5 МВт была построена на Камчатке. Для устройства простейшей приливной электростанции (ПЭС) нужен бассейн — перекрытый плотиной залив или устье реки. В плотине имеются водопропускные отверстия и
 
 
 
 
 
 
 
 
 

 
 

     Рисинок 1 – Принцип действия ветряной электростанции 
 

установлены гидротурбины, которые вращают генератор. Гидротурбина - это лопаточная машина, приводимая во вращение потоком жидкости, обычно речной воды. По принципу действия гидравлические турбины подразделяют на активные (свободоструйные) и реактивные (напороструйные); по конструкции - на вертикальные и горизонтальные.  В зависимости от расположения оси вращения различают вертикальные и горизонтальные гидрогенераторы; по частоте вращения - тихоходные (до 100 об/мин) и быстроходные (свыше 100 об/мин). Мощность гидрогенераторов от нескольких десятков до нескольких сотен МВт. 
     Во  время прилива вода поступает  в бассейн. Когда уровни воды в  бассейне и море сравняются, затворы водопропускных отверстий закрываются. С наступлением отлива уровень воды в море понижается, и, когда напор становится достаточным, турбины и соединенные с ним электрогенераторы начинают работать, а вода из бассейна постепенно уходит. Считается экономически целесообразным строительство приливных электростанций в районах с приливными колебаниями уровня моря не менее 4 м. Проектная мощность приливной электростанции зависит от характера прилива в районе строительства станции, от объема и площади приливного бассейна, от числа турбин, установленных в теле плотины. Общий вид приливной электростанции представлен на рисунке 2. В приливных электростанциях двустороннего действия турбины работают при движении воды из моря в бассейн и обратно. Приливные электростанции двустороннего действия способна вырабатывать электроэнергию непрерывно в течение 4-5 ч с перерывами в 1-2 ч четыре раза в сутки. Для увеличения времени работы турбин существуют более сложные схемы — с двумя, тремя и большим количеством бассейнов, однако стоимость таких проектов весьма высока. Недостаток приливных электростанции в том, что они строятся только на берегу морей и океанов, к тому же они развивают не очень большую мощность, да и приливы бывают всего лишь два раза в сутки. И даже они экологически не безопасны. Они нарушают нормальный обмен соленой и пресной воды и тем самым — условия жизни морской флоры и фауны. Влияют они и на 
 
 
 
 
 
 
 
 

   

     Рисунок 2 – Общий вид приливной электростанции 
 
 
 
 
 

климат, поскольку меняют энергетический потенциал морских вод, их скорость и территорию перемещения. Морские теплостанции, построенные на перепаде температур морской воды, способствуют выделению большого количества углекислоты, нагреву и снижению давления глубинных вод и остыванию поверхностных. А процессы эти не могут не сказаться на климате, флоре и фауне региона.  

2.4 Геотермальные электростанции

     Электростанции  такого типа преобразуют внутреннее тепло Земли (энергию горячих пароводяных источников) в электричество. 
     Существует  несколько схем получения электроэнергии на геотермальной электростанции. Прямая схема: природный пар направляется по трубам в турбины, соединенные с электрогенераторами. Непрямая схема: пар предварительно (до того как попадает в турбины геотермальной электростанции) очищают от газов, вызывающих разрушение труб. 
     Смешанная схема: неочищенный пар поступает  в турбины, а затем из воды, образовавшийся в результате конденсации, удаляют не растворившиеся в ней газы.  К недостаткам геотермальной электростанции относится возможность локального оседания грунтов и пробуждения сейсмической активности. А выходящие из-под земли газы создают в окрестностях немалый шум и могут, к тому же, содержать отравляющие вещества. Кроме того, геотермальную электростанцию построить можно не везде, потому что для ее постройки необходимы определенные геологические условия [4].  

2.5 Термоэмиссионные преобразователи.

     Основная  цель термоэмиссионного преобразования энергии состоит в генерации электричества для использования в удаленных полярных районах, под
 водой  и в космосе. Исчисляются также  возможности использования термоэмиссионного преобразователя в качестве надстройки к обычным ТЭС.
     Вакуумный, квазивакуумный и диффузионный режимы в настоящее время хорошо изучены, и теоретическое описание их увязывается с экспериментом. В дуговом режиме много неясных вопросов и пока отсутствует теоретическая модель, достаточно хорошо согласующаяся с экспериментом. Хотя этот режим является одним из наиболее перспективных, при расчете генератора приходится основываться больше на экспериментальных данных, чем на теоретических характеристиках.
     При разработке реального термоэмиссионного  преобразователя важнейшими проблемами являются:
      создание электродов с определенной работой выхода, минимальной испаряемостью и малым сопротивлением;
      регулирование и поддержание необходимого вакуума и давления паров наполнителя (Cs, Cs+K, Cs+Ba);
      разработка коррозионно-стойкой   оболочки   корпуса  термоэмиссионного преобразователя» надежного соединения различных частей преобразователя;
      подвод к эмиттеру теплового потока 10-20 Вт/см2 и отвод его с коллектора термоэмиссионного преобразователя [3].
     Эмиттерный  узел термоэмиссионного преобразователя обычно состоит из эмиттера и токоввода, с помощью которого эмиттер присоединяется либо к токоведущей шине и гермовводу, либо к коллектору соседнего термоэмиссионного преобразователя.
     Рабочие температуры эмиттера обычно лежат  в диапазоне 1600-2100 К. Токоввод эмиттера обеспечивает перепад температур до 1500 К. Эмиттерный узел в большинстве случаев находится в среде паров цезия при Ра до 2*103 Па. Через эмиттер могут проходить токи порядка 50-100 А. Материал эмиссионного покрытия должен иметь температуру плавления 2000 К, а материал оболочки - не менее 2700 К. Скорость испарения материала эмиттера не должна превышать 10 мкм/год, что соответствует давлению паров эмиттера не более 10-* Па. В качестве материалов эмиттерного узла используются тугоплавкие металлы, сплавы,  соединения:  W, Re,Ta, Mo, Nb, UC, ZrC, UN.
     Коллекторный  узел термоэмиссионного преобразователя  обычно включает в себя коллектор и защитный чехол, герметично отделяющий межэлектродную полость термоэмиссионного преобразователя от внешней полости, которая может быть вакуумирована или заполнена газами или охлаждающими жидкостями. Рабочие температуры коллекторного узла составляют обычно 700-BOOK. Через коллектор и защитный чехол могут проходить электрические токи до 500А. Температура плавления материалов коллектора и защитного чехла должна быть не ниже 1300 К, работа выхода коллектора - примерно 3,6 эВ, испаряемость -около Ю-12м/с, давление пара-приблизительно 106Па. Результаты экспериментов показывают, что в качестве материалов коллектора можно использовать: нержавеющую сталь, медь и медь, покрытую Ni, Mo, Nb и сплав ниобия с 1% циркония, никель, рений. В качестве конструкционных материалов может использоваться медь и ее сплавы, никель и его сплавы, нержавеющие стали. Для связывания выделяющихся в процессе работы термоэмиссионного преобразователя газов во внутреннем объеме термоэмиссионного преобразователя размещаются газопоглотители - геттеры. В качестве геттеров обычно используют активные металлы, такие как Nb, Ti, Zr, Ba, а также сплавы Zr-Al, Zr-Al-Ni, Zr-Ti и др. В качестве изоляционных материалов в термоэмиссионном преобразователе используются чаще всего материалы на основе оксидов АЬОз, BeO, V2O2, MgO. Термоэмиссионные преобразователи удачно сочетаются с атомным реактором. Многочисленные расчеты показали, что масса и габаритные размеры такой атомной электростанции открывают благоприятные перспективы применения ее на космических объектах для питания бортовой аппаратуры и электрических двигателей.
     Первым  в мире (1970) термоэмиссионным реактором  преобразователем стал российский реактор "Топаз". Аналогичные реакторы-преобразователи разрабатываются и в других странах. Так, в частности, достигнута стабильная работа термоэмиссионного преобразователя в лабораторных испытаниях с вольфрамовым эмиттером и ниобиевым коллектором (КПД 17%, удельная электрическая мощность 8 Вт/см2) в течение 46000 ч. 

2.6 Гальванические элементы

     В настоящее время не стоит вопрос о получении с помощью гальванических элементов больших количеств электрической энергии и это вряд ли целесообразно, поскольку потребности современного общества в электроэнергии вполне удовлетворяются за счет сети электропередач. Однако в технике и быту постоянно растет число таких приборов, машин и сигнальных устройств, для которых требуются автономные, малогабаритные легкие и надежные источники тока. Здесь можно назвать аккумуляторы для автомобилей и самолетов, источники тока для электроинструментов, сигнальных устройств, транзисторных приемников, электрических карманных фонариков, наручных часов и т.д. и, конечно же, для искусственных спутников Земли и космических лабораторий. Гальванические элементы находят также применение в различных предохранительных устройствах.
     Практика  предъявляет к современным гальваническим элементам весьма разнообразные  требования. Вследствие, все возрастающего и весьма разнообразного спроса на гальванические элементы в последнее время вновь расширяются научные исследования, направленные на разработку новых и усовершенствование старых типов элементов.
     Гальванические  элементы как источники электрической энергии обладают существенными преимуществами: они могут быть различных размеров и форм, не имеют макроскопически подвижных, подверженных износу частей, относительно легки и автономны, мало чувствительны к вибрации и колебаниям температуры, работают бесшумно, хорошо регулируются. Их КПД довольно высок (до 90%), так как превращение химической энергии в электрическую совершается в них без промежуточной тепловой стадии, а электродные процессы в некоторых случаях близки к обратимым. Гальванические элементы, применяемые на практике для получения электрической энергии, делятся на первичные и вторичные.
     Первичные элементы не могут быть возвращены в рабочее состояние после того, как их наполнитель (активное вещество) был уже однажды израсходован. В этом случае говорят, что элемент истощен. У таких элементов нельзя или, по меньшей мере, неэкономично обращать электродный процесс, пропуская ток в обратном направлении. Этот тип обычно называют просто элементом.
     Вторичные элементы или аккумуляторы можно регенерировать после истощения, если пропустить через них ток в обратном направлении (зарядить), потому что процессы генерации тока, происходящие на их электродах, с хорошим приближением электрохимически обращаемы. Принципиального же различия между первичными и вторичными элементами нет. Основными требованиями к гальваническим элементам являются следующие: большой срок службы, высокие плотность тока и напряжение на клеммах. Желательно также, чтобы они обладали высоким КПД, использовали дешевые активные вещества, имели малые размеры и вес, были просты по устройству и долговечны.
     Рассмотрим  основные параметры гальванических элементов. Электродвижущая сила - разность потенциалов между электродами гальванического элемента когда между электродами и раствором существует равновесие и через элемент не проходит ток. Значение эдс не зависит ни от размеров элемента, ни от его внутреннего сопротивления, а является лишь функцией состава электродов и концентрации электролита. Напряжение на клеммах - разность потенциалов между полюсами в процессе прохождения тока, когда полюса соединены между собой через сопротивление. Напряжение на клеммах меньше, чем эдс, причем различие между ними тем меньше, чем меньше внутреннее сопротивление элемента по сравнению с внешним и чем меньше поляризованы электроды. Внутреннее сопротивление - выраженное в омах сопротивление электродов и находящегося между ними раствора электролита. Емкость элемента - выраженное в кулонах или ампер-часах количество электричества, которое элемент способен отдать при соответствующих условиях. У аккумуляторов следует отличать разрядную емкость от зарядной. Обычно емкость выражают через электрическую энергию и в большинстве случаев измеряют ватт-часах или киловатт-часах. Емкость элемента данного типа тем больше, чем большее количество электрохимически активных веществ, которые превращают химическую энергию в электрическую, он содержит и чем меньше плотность генерируемого тока.
     Мощность  элемента - это количество электрической  энергии, получаемое за секунду, равное напряжению на клеммах, умноженному на силу тока, которую без ущерба может дать элемент. Максимальная сила тока, которую можно получить от элемента, определяется этой мощностью, деленной на напряжение на клеммах.
     Существенным  недостатком гальванических элементов является саморазряд - расходование ими электрохимически активных веществ при отсутствии внешнего тока. Причиной этого может быть - например, растворение металла электродов вследствие образования так называемых локальных элементов, или протекание процесса, генерирующего ток, "непосредственным химическим" путем, или же недостаточная изолирующая способность диэлектрических деталей элемента. Саморазряд уменьшает срок службы элемента, последний со временем становится непригодным, даже если он вообще не использовался для получения энергии.

2.7. Водородная энергия

     Водородную  энергию предлагается использовать вместо бензина для автомобильных двигателей в виде жидкого водорода. Водород можно получать, разлагая воду электролитическим методом (кроме водорода получается еще и кислород). При сжигании водорода в двигателе он соединяется с кислородом атмосферного воздуха, и вновь образуется вода. Нигде не происходит никакого загрязнения среды, кроме узлов производства электроэнергии и ее передачи и преобразования.
     Более подробное рассмотрение показывает, что при сжигании водорода в воздухе  все же возникают токсичные окиси  азота. Чтобы избежать загрязнения  ими среды, вероятно, более правильным было бы заправлять автомобили также  и кислородом. Тогда при сгорании в камерах, не дост
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.