На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


реферат Измерительные сигналы

Информация:

Тип работы: реферат. Добавлен: 01.11.2012. Сдан: 2012. Страниц: 5. Уникальность по antiplagiat.ru: < 30%

Описание (план):


Министерство  образования и науки РФ
Федеральное государственное бюджетное образовательное  учреждение
высшего профессионального образования
«Магнитогорский государственный технический университет  им. Г.И. Носова»
 
Кафедра физики
 
 
 
 
Доклад
по дисциплине «Автоматизация измерений»
на тему
«Измерительные  сигналы»
 
 
 
 
 
 
Выполнил:
студент гр. ТС-08        Ахмадуллина Э. Р.
Проверил:
преподаватель кафедры     Бахматов Ю. Ф
 
 
 
 
Магнитогорск, 2012
Сигналом называется материальный носитель информации, представляющий собой некоторый физический процесс, один из параметров которого функционально связан с измеряемой физической величиной. Такой параметр называют информативным.
Измерительный сигнал — это сигнал, содержащий количественную информацию об измеряемой физической величине.
 
Классификация измерительных  сигналов
Измерительные сигналы чрезвычайно  разнообразны. Их классификация по различным признакам приведена  на рис. 1.
 

Рисунок 1 - Классификация измерительных сигналов
 
По характеру измерения информативного и временного параметров измерительные сигналы делятся на аналоговые, дискретные и цифровые.
Аналоговый сигнал — это сигнал, описываемый непрерывной или кусочно-непрерывной функцией Ya(t), причем как сама эта функция, так и ее аргумент t могут принимать любые значения на заданных интервалах Y I (Ymin; Ymax) и t I (tmin; tmax) (рис.2,а).
 

Рисунок 2 - Аналоговый (а), дискретный (по времени) (б)
и цифровой (в) измерительные сигналы
 
Дискретный сигнал — это сигнал, изменяющийся дискретно во времени или по уровню. В первом случае он может принимать в дискретные моменты времени nТ, где Т = const — интервал (период) дискретизации, n = 0; 1; 2;...— целое, любые значения Yд(nT) I (Yniin; Ymax), называемые выборками, или отсчетами. Такие сигналы (рис.2,б) описываются решетчатыми функциями. Во втором случае значения сигнала Ya(t) существуют в любой момент времени t I (tmin; tmax), однако они могут принимать ограниченный ряд значений hi = nq, кратных кванту q.
Цифровые сигналы — квантованные по уровню и дискретные по времени сигналы Yu(nT), которые описываются квантованными решетчатыми функциями (квантованными последовательностями), принимающими в дискретные моменты времени nТ лишь конечный ряд дискретных значений — уровней квантования h1, h2, .... hn (рис.2,в).
По характеру изменения во времени сигналы делятся на постоянные, значения которых с течением времени не изменяются, и переменные, значения которых меняются во времени.
Переменные сигналы могут быть непрерывными во времени и импульсными.
По степени наличия априорной информации переменные измерительные сигналы делятся на детерминированные, квазидетерминированные и случайные.
Детерминированный сигнал — это сигнал, закон изменения которого известен, а модель не содержит неизвестных параметров.
Квазидетерминированные сигналы — это сигналы с частично известным характером изменения во времени, т.е. с одним или несколькими неизвестными параметрами.
Детерминированные и квазидетерминированные сигналы делятся на элементарные, описываемые простейшими математическими формулами, и сложные.
Сигналы могут быть периодическими и непериодическими.
Случайный сигнал — это изменяющаяся во времени физическая величина, мгновенное значение которой является случайной величиной.
Характеристики случайных процессов, в отличие от характеристик случайных величин, которые подробно рассмотрены в гл. 6, являются не числами, а функциями. К важнейшим из них относятся математическое ожидание и дисперсия.
Математическим ожиданием  случайной функции X(t) называется неслучайная функция

которая при каждом значении аргумента t равна математическому ожиданию соответствующего сечения. Здесь p(x,t) — одномерная плотность распределения случайной величины х в соответствующем сечении случайного процесса X(t).Таким образом, математическое ожидание в данном случае является средней функцией, вокруг которой группируются конкретные реализации.
Дисперсией случайной  функции X(t) называется неслучайная функция

значение которой для каждого момента времени равно дисперсии соответствующего сечения, т.е. дисперсия характеризует разброс реализаций относительно mx(t).
Математическое ожидание случайного процесса и его дисперсия являются весьма важными, но не исчерпывающими характеристиками, так как определяются только одномерным законом распределения. Они не могут характеризовать взаимосвязь между различными сечениями случайного процесса при различных значениях времени t и t'. Для этого используется корреляционная функция — неслучайная функция R(t, t') двух аргументов t и t', которая при каждой паре значений аргументов равна ковариации соответствующих сечений случайного процесса:

Корреляционная функция, называемая иногда автокорреляционной, описывает статистическую связь между мгновенными значениями случайной функции, разделенными заданным значением времени т = t'-t. При равенстве аргументов корреляционная функция равна дисперсии случайного процесса. Она всегда неотрицательна.
На пpaктике часто используется нормированная корреляционная функция

 
Классификация помех
Измерительные сигналы редко присутствуют в средствах измерений в чистом виде. Практически всегда на них  накладываются помехи. Под помехой понимается сигнал, однородный с измерительным и действующий одновременно с ним. Его присутствие приводит к появлению погрешности измерения. Классификация помех возможна по ряду признаков.
По месту возникновения помехи делятся на внешние и внутренние. Причиной возникновения внешних помех являются природные процессы и работа различных технических устройств. Последние создают так называемые индустриальные помехи.
Внутренние помехи обусловлены процессами, происходящими при работе самого средства измерений.
В зависимости от вида включения источников помехи и измерительного сигнала в эквивалентных схемах средств измерений различают помехи общего вида (синфазные) и помехи нормального (последовательные) вида. Источник помехи общего вида включен между общими точками (корпусами) схем объекта измерений и СИ. Источник помехи нормального вида включен последовательно во входную цепь СИ.
По виду частотного спектра помехи делятся на белый и розовый шумы. Спектральные составляющие белого шума равномерно распределены по всему частотному диапазону. У розового шума спектральная мощность, приходящаяся на декаду частоты, постоянна.
По основным свойствам помехи можно разделить на три вида: флуктуационные, сосредоточенные и импульсные.
Флуктуационные помехи представляют собой хаотическое, беспорядочное изменение во времени сигнала, однородного с измеряемым, в каком-либо месте средства измерений. Такие помехи часто называют шумом. Пример — внутренние шумы измерительных электронных усилителей. Различают следующие виды шумов:
• тепловой (шум Джонсона), по своим свойствам близкий к белому шуму. Тепловой шум генерируется любым резистором, находящимся в измерительной цепи. Значение его состоит в том, что он устанавливает нижнюю границу напряжения шумов любого измерительного преобразователя, имеющего выходное сопротивление;
• дробовый, обусловленный движением электронов — дискретных носителей электрического тока. Он имеет равномерный спектр, т.е. является белым;
• фликкер-шум. К данному виду относят шумы, у которых спектральная мощность на декаду частоты примерно постоянна, т.е. розовые шумы, например шум постоянного резистора, пропорциональный протекающему через него току, шум тока базы транзистора и др.
Сосредоточенными называют помехи, основная часть мощности которых сосредоточена на отдельных участках диапазона частот, меньших полосы пропускания СИ. Помехи, наводимые в измерительных цепях СИ от промышленной силовой сети частотой 50 Гц, являются сосредоточенными. Эффективность их подавления в значительной мере определяется достоверностью априорных данных о частотном спектре.
Импульсными помехами называется регулярная или хаотическая последовательность импульсных сигналов, однородных с измерительным сигналом. Источниками таких помех являются цифровые и коммутирующие элементы СИ или работающего рядом с ними устройства. Характерный пример импульсных помех — помехи от устройств зажигания двигателей внутреннего сгорания. Импульсные и сосредоточенные помехи часто называют наводками.

Математическое описание измерительных сигналов

В метрологии измерительные сигналы  описываются математическими моделями вида Y = f(X, А, В, С,...), где Y — основной информативный параметр сигнала; X — независимый аргумент сигнала;
А,В,С — параметры сигнала. В зависимости от рода независимого аргумента сигналы описываются временными (X = t) и частотными (X = о)) математическими моделями. Вид модели выбирается в зависимости от конкретных условий решаемой задачи.
Во временной области применяют  известные математические функции  f(t, А, В, С,...), наиболее точно описывающие изменение сигнала, в которых один из параметров А, В, С и т.д. зависит от измеряемой величины. Временная форма представления сигнала позволяет легко определить такие важные характеристики, как энергия, мощность и длительность сигнала.
Наряду с временным описанием  сигналов широко используется их спектральное (частотное) представление. В процессе передачи и обработки сигналов оно играет особую роль, поскольку определяет параметры используемой аппаратуры. Частотное представление основывается на преобразовании Фурье сигнала Y(t):

где А0 — постоянная составляющая; Аn, jп— амплитуда и фаза n-й гармоники. Множество значений Аn(w) и jn(w) образуют соответственно амплитудный и фазовый спектры, которые характеризуют свойства сигнала Y(t) в частотной области.
Спектральное представление сигнала  позволяет оценить его частотный  диапазон, т.е. граничные частоты, между  которыми заключены все или основные, имеющие наибольшие амплитуды гармонические составляющие сигнала. Частотный диапазон является важной характеристикой сигнала, определяющей необходимую полосу пропускания средства измерения для передачи сигналов с требуемой точностью.

Математические модели элементарных измерительных сигналов

К элементарным измерительным сигналам относятся постоянный во времени сигнал и сигналы, описываемые единичной и синусоидальной функциями, а также дельта-функцией.
Постоянный сигнал — самый простой из элементарных сигналов, описываемый математической моделью вида Y = А, где А — единственный параметр сигнала. Графики временной и частотной моделей постоянного сигнала приведены на рис.3.

Рисунок 3 - Графики временной (а) и частотной (б) моделей
постоянного сигнала
 
Единичная функция, называемая иногда функцией Хевисайда, описывается уравнением

Она имеет один параметр — момент времени t0. Ее временная и частотная модели представлены на рис.4 а.
Дельта-функция описывается уравнением

Она также имеет один параметр —  момент времени t0. Графики временной и частотной моделей дельта-функции d(t) показаны на рис.4, б. Из них видно, что дельта-функция имеет спектр бесконечной ширины.

     Рисунок 4 - График моделей единичной (а) и дельта-функции(б)
 
Единичная и дельта-функции связаны между собой следующими выражениями:

Гармонический сигнал описывается уравнением
    
Параметрами такого сигнала являются: амплитуда Ym, период Т (или частота f=l/T, или круговая частота w) и начальная фаза j. График временной модели общеизвестен, а график частотной модели такого сигнала показан на рис. 5.
 
.

          Рисунок 5 - Спектр гармонического сигнала
 
Модулированные сигналы
Модулированным называется сигнал, являющийся результатом взаимодействия двух или более сигналов, т.е. модуляции. Модуляция — это воздействие измерительного сигнала X(t) на какой-либо параметр стационарного сигнала Y(t), обладающего такими физической природой и характером изменения во времени, при которых удобны его дальнейшие преобразования и передача. В качестве стационарного сигнала, именуемого несущим, обычно выбирают синусоидальное (гармоническое) колебание

Вид модуляции и способ детектирования зависят от требований, предъявляемых к точности передачи информации. Наиболее простым модулированным гармоническим сигналом является амплитудно-модулированный сигнал, в котором измерительная информация содержится в амплитуде несущего синусоидального сигнала (рис. 6).

Рисунок 6 - Амплитудно-модулированный (1) и модулирующий (2) сигналы
 
Амплитудно-модулированные сигналы  описываются формулой
   
где m — глубина амплитудной модуляции (всегда меньше единицы). При частотной модуляции (рис.7) измерительная информация содержится в частоте модулированного сигнала, т.е.

где Dw — наибольшее изменение частоты модулированного сигнала, т.е. девиация частоты, пропорциональная амплитуде модулирующего сигнала.
При фазовой модуляции (рис. 8) модулирующий сигнал X(t) воздействует на фазу несущего колебания:

где mф — коэффициент фазовой модуляции.

Рисунок 7 - Частотно-модулированный (1) и модулирующий (2) сигналы

Рисунок 8 - Модулирующий (1), фазомодулированный (2) и                              опорный (3) сигналы
 
Если модулируемым сигналом является периодическая последовательность прямоугольных импульсов, то возможны три вида модуляции (рис. 9):
• амплитудно-импульсная (АИМ);
• частотно-импульсная (ЧИМ);
• широтно-импульсная (ШИМ).

Рисунок 9 - Несущая последовательность прямоугольных импульсов (а), модулирующий (б), амплитудно-модулированный (в), частотно-модулированный (г) и широтно-модулированный (д) сигналы
 
При этом параметром, несущим измерительную  информацию, соответственно являются амплитуда, частота и длительность импульсов.

Квантование и дискретизация измерительных сигналов

Квантование — измерительное преобразование непрерывно изменяющейся величины в ступенчато изменяющуюся с заданным размером ступени q — квантом. В результате проведения этой операции непрерывное множество значений сигнала Y(t) в диапазоне от Ymin до Ymax преобразуется в дискретное множество значений YKB(t) (см. рис.10). Квантование широко применяется в измерительной технике. Существует большая группа естественно квантованных физических величин. К ним относятся электрический заряд, квантом которого является заряд электрона, масса тела, квантом которой является масса молекулы или атома, составляющих данное тело, и др.

Рисунок 10 - Исходный непрерывный (1) и непрерывный по
времени и квантованный по размеру (2) сигналы
 
Различают равномерное (q — постоянная величина) и неравномерное (q — переменная величина) квантование. Неравномерное квантование применяется достаточно редко, в специфических случаях, например при большом динамическом диапазоне квантуемой величины. В связи с этим в дальнейшем рассматривается только равномерное квантование.
Процесс квантования описывается  уравнением

где Yкв
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.