На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


реферат Водно минеральный обмен

Информация:

Тип работы: реферат. Добавлен: 11.11.2012. Сдан: 2012. Страниц: 5. Уникальность по antiplagiat.ru: < 30%

Описание (план):


?Введение
1. Водный обмен
2. Макроэлементы
3. Микроэлементы
Выводы
Список использованных источников


Введение

Вода в физиологических процессах организма играет большую роль. Она составляет 65-70% массы тела (40-50 л). Общий баланс воды в организме определяется, с одной стороны, поступлением воды с пищей (2-3 л) и образованием эндогенной (внутренней) воды (200-300 мл), с другой - выделением ее через почки (600-1200 мл) и с калом (50-200 мл).
Потребность человека в воде в обычных условиях составляет 2,5 л. В высокогорных условиях водный обмен резко изменяется. Значительно увеличивается отдача воды через кожу, легкие, наблюдается "высушивание" организма на больших высотах, уменьшается выделение мочи. Потребность организма в жидкости зависит от высоты, сухости воздуха, нагрузки, тренированности альпиниста. В период тренировочных и подготовительных восхождений она колеблется от 2 до 3 л в сутки. При высотных восхождениях надо придерживаться этой нормы, а по возможности довести ее до 3,5-4,5 л, что в полной мере обеспечит физиологические потребности организма. В экспедиции на Эверест(1953) потребление жидкости было в пределах 2,8-3,9 л на человека.
Водный обмен тесно связан с минеральным, особенно с обменом натрия хлорида и калия хлорида. Поддержание водно-солевого гомеостаза (равновесия) сказывается и на деятельности других функциональных систем организма - нервной, сердечно-сосудистой, дыхательной и других. Кора большого мозга, содержащая наибольшее количество воды, сильнее других страдает от ее недостатка. При этом к гипоксии присоединяется также водно-питьевая недостаточночть.
В поддержании водно-солевого равновесия выделяют три звена: поступление воды и солей в организм, перераспределение их между внутриклеточными и внеклеточными системами, выделение во внешнюю среду. Ведущую роль в поддержании гомеостаза играют ионы натрия, поэтому при восхождениях крайне необходимо брать с собой соль; организм должен ежедневно получать до 15-20 г соли. Недостаток калия ведет к мышечной слабости, расстройству деятельности сердечно-сосудистой системы, снижению умственной и психической деятельности.


1. Водный обмен

Структура и размеры жидкостных секторов организма, то есть пространств, заполненных жидкостью и разделенных клеточными мембранами, к настоящему времени достаточно хорошо изучены [1]. Общий объем жидкостей тела, составляющий у млекопитающих примерно 60% массы тела, распределен между двумя большими секторами: внутриклеточным (40% массы тела) и внеклеточным (20% массы тела). Внеклеточный сектор включает объем жидкости, находящейся в интерстициальном (межклеточном) пространстве, и жидкости, циркулирующей в сосудистом русле. Небольшой объем составляет и так называемая трансцеллюлярная жидкость, находящаяся в региональных полостях (цереброспинальная, внутриглазная, внутрисуставная, плевральная и т.д.). Внеклеточная и внутриклеточная жидкости значительно отличаются по составу и концентрации отдельных компонентов, но общая суммарная концентрация осмотически активных веществ примерно одинакова (табл. 1). Перемещение воды из одного сектора в другой происходит уже при небольших отклонениях общей осмотической концентрации. Поскольку большинство растворенных субстанций и молекулы воды довольно легко проходят через эпителий капилляров, происходит быстрое перемешивание всех компонентов (кроме белка) между плазмой крови и интерстициальной жидкостью. Многие факторы, такие, как прием, потеря или ограничение потребления воды, усиленное потребление соли или, наоборот, ее дефицит, смещение интенсивности метаболизма и т.д., способны изменять объем и состав жидкостей тела. Отклонение этих параметров от некоего нормального уровня включает механизмы, корригирующие нарушения водно-солевого гомеостаза.
ОБЩАЯ СХЕМА ВОДНО-СОЛЕВОГО БАЛАНСА
Система регуляции водно-солевого баланса имеет два компенсирующих компонента: 1) пищеварительный тракт, который может приблизительно корригировать нарушения водно-солевого баланса благодаря жажде и солевому аппетиту; 2) почки, способные обеспечить адекватную для сохранения баланса задержку в организме или экскрецию воды и солей. На рис. 1 представлена схема главных путей поступления и выделения воды и солей. Основным каналом поступления воды и солей в плазму крови и другие жидкости тела является желудочно-кишечный тракт. В сутки потребление составляет приблизительно 2,5 л воды и 7 г хлорида натрия. К этому же можно добавить 0,3 л метаболической воды, выделяющейся в результате окислительного
Таблица 1. Концентрация электролитов и органических компонентов в жидкостях тела у человека (усредненные данные из разных литературных источников)
 
Компоненты жидкостей тела
Концентрация веществ в жидкостных секторах
плазма крови
интерстициальная жидкость
внутриклеточная жидкость
Электролиты, мМ/л
 
 
 
Na+
135 - 142
144
10
К+
3,5-5,4
4,0
140 - 160
Са2+
2,2-2,7
1,2
2 - 5 (• Ю-4)
Mg2+
0,8-1,6
0,7-1,0
13,5-58
С1-
110
114
2-25
НСОз
27-29
30,5
8-10
НРО4
2,1-4,2
4,0-4,4
75-80
Н2РО4
2,1-4,2
4,0-4,4
75-80
SO4
1,1-2,2
2,0-2,4
4-40
Белок, г/л
20-50
1,0
160 - 550
Глюкоза, г/л
0,9
-
0-0,2
Аминокислоты, г/л
0,3
-
2,0 (?)
Холестерол, г/л
5,0
-
20 - 950
Фосфолипиды, г/л
5,0
-
20 - 950
Нейтральные жиры, г/л
5,0
-
20 - 950
рН
7,36-7,4
-
-
 
Не очень легко представить, что человек примерно на 65% состоит из воды. С возрастом содержание воды в организме человека уменьшается. Эмбрион состоит из воды на 97%, в теле новорожденного содержится 75%, а у взрослого человека – около 60%.
В здоровом организме взрослого человека наблюдается состояние водного равновесия или водного баланса. Оно заключается в том, что количество воды, потребляемое человеком, равно количеству воды, выводимой из организма. Водный обмен является важной составной частью общего обмена веществ живых организмов, в том числе и человека. Водный обмен включает процессы всасывания воды, которая поступает в желудок при питье и с пищевыми продуктами, распределение ее в организме, выделения через почки, мочевыводящие пути, легкие, кожу и кишечник. Следует отметить, что вода также образуется в организме вследствие окисления жиров, углеводов и белков, принятых с пищей. Такую воду называют метаболической. Слово метаболизм происходит от греческого, что означает перемена, превращение. В медицине и биологической науке метаболизмом называют процессы превращения веществ и энергии, лежащие в основе жизнедеятельности организмов. Белки, жиры и углеводы окисляются в организме с образованием воды H2О и углекислого газа (диоксида углерода) CO2. При окислении 100 г жиров образуется 107 г воды, а при окислении 100 г углеводов – 55,5 г воды. Некоторые организмы обходятся лишь метаболической водой и не потребляют ее извне. Примером является ковровая моль. Не нуждаются в воде в природных условиях тушканчики, которые водятся в Европе и Азии, и американская кенгуровая крыса. Многие знают, что в условиях исключительно жаркого и сухого климата верблюд обладает феноменальной способностью долгое время обходиться без пищи и воды. Например, при массе 450 кг за восьмидневный переход по пустыне верблюд может потерять 100 кг в массе, а потом восстановить их без последствий для организма. Установлено, что его организм использует воду, содержащуюся в жидкостях тканей и связок, а не крови, как это происходит с человеком. Кроме того, в горбах верблюда содержится жир, который служит одновременно запасом пищи и источником метаболической воды.
Общий объем воды, потребляемый человеком в сутки при питье и с пищей, составляет 2...2,5 л. Благодаря водному балансу столько же воды и выводится из организма. Через почки и мочевыводящие пути удаляется около 50...60% воды. При потере организмом человека 6...8% влаги сверх обычной нормы повышается температура тела, краснеет кожа, учащается сердцебиение и дыхание, появляется мышечная слабость и головокружение, начинается головная боль. Потеря 10% воды может привести к необратимым изменениям в организме, а потеря 15...20% приводит к смерти, поскольку кровь настолько густеет, что с ее перекачкой не справляется сердце. В сутки сердцу приходится перекачивать около 10000 л крови. Без пищи человек может прожить около месяца, а без воды – всего лишь несколько суток. Реакцией организма на нехватку воды является жажда. В этом случае ощущение жажды объясняют раздражением слизистой оболочки рта и глотки из-за большого понижения влажности. Существует и другая точка зрения на механизм формирования этого ощущения. В соответствии с ней сигнал о понижении концентрации воды в крови на клетки коры головного мозга подают нервные центры, заложенные в кровеносных сосудах.
Водный обмен в организме человека регулируется центральной нервной системой и гормонами. Нарушение функции этих регуляторных систем вызывает нарушение водного обмена, что может приводить к отекам тела. Конечно, различные ткани человеческого организма содержат различное количество воды. Самая богатая водой ткань – стекловидное тело глаза, содержащее 99%. Самая же бедная – эмаль зуба. В ней воды всего лишь 0,2%. Много воды содержится в веществе мозга.

2. Макроэлементы

К макроэлементам относятся K, Na, Ca, Cl. Например, при весе человека 70 кг, в нём содержится (в граммах ): кальция – 1700, калия – 250, натрия– 70.
КАЛЬЦИЙ
Большое содержание кальция в организме человека объясняется тем, что он в значительном количестве содержится в костях в виде гидроксофосфат кальция – Ca10(PO4)6(OH)2 и его суточное потребление составляет для взрослого человека 800-1200мг.
Концентрация ионов кальция в плазме крови поддерживается очень точно на уровне 9-11мг% и у здорового человека редко колеблется больше чем на 0,5мг% выше или нормального уровня, являясь одним из наиболее точно регулируемых факторов внутренней среды. Узкие границы, в пределах которых колеблется содержание кальция в крови, обусловлены взаимодействием двух гормонов – паратгормона и тирокальцитонина. Падение уровня кальция в крови приводит к усилению внутренней секреции околощитовидных желез, что сопровождается увеличением поступления кальция в кровь из его костных депо. Наоборот, повышение содержания этого электролита в крови угнетает выделение паратгормона и усиливает образование тирокальцитонина из парафолликулярных клеток щитовидной железы, в результате чего снижается количество кальция в крови. У человека при недостаточной внутрисекретрной функции околощитовидных желез развивается гипопаратериоз с падением уровня кальция в крови. Это вызывает резкое повышение возбудимости центральной нервной системы, что сопровождается приступами судорог и может привести к смерти. Гиперфункция околощитовидных желез вызывает увеличение содержания кальция в крови и уменьшение неорганического фосфата, что сопровождается разрушением костной ткани (остеопороз), слабостью в мышцах и болями в конечностях.
 

НАТРИЙ и КАЛИЙ

 
Жизненно необходимые элементы натрий и калий функционируют в паре. Надёжно установлено что скорость диффузии ионов Na, и K через мембрану в покое мала, разность их концентрации вне клетки и внутри должна была в конечном итоге выровняться, если бы в клетке не существовало специального механизма, который обеспечивает активное выведение («выкачивание») из протоплазмы проникающих в неё ионов натрия и введение («нагнетание») ионов калия. Этот механизм получил название натрий – калиевого насоса.
Для того чтобы сохранялась ионная асимметрия, натрий - калиевый насос должен выкачивать против градиента концентрации из клетки ионы натрия и нагнетать в неё ионы калия и, следовательно, совершать определённую работу.
Непосредственным источником энергии для работы насоса является расщепление богатых энергией фосфорных соединений – АТФ, которое происходит под влиянием фермента – аденозинтрифосфатазы, локализованной в мембране и активируемой ионами натрия и калия. Торможение активности этого фермента, вызываемое некоторыми веществами и приводит к нарушению работы насоса. Интересно, что по мере старения организма градиент концентрации ионов калия и натрия на границе клеток падает, а при наступление смерти выравнивается

3. Микроэлементы

К ним относится отмеченный выше ряд 22 химических элементов, обязательно присутствующих в организме человека. Заметим, что большинство из них металлы, а из металлов основным является железо.
ЖЕЛЕЗО
Несмотря на то, что содержание железа в человеке массой 70кг не превышает 5г и суточное потребление 10 – 15мг, оно играет особую роль в жизни деятельности организма
Железо занимает совершенно особое место, так как на него не распространяется действие секреторной системы. Концентрация железа регулируется исключительно его поглощением, а не выделением. В организме взрослого человека около 65% всего железа содержится в гемоглобине и миоглобине, большая часть оставшегося запасается в специальных белках (ферритине и гемосидерине), и только очень небольшая часть находится в различных ферментах и системах транспорта.
Гемоглобин и миоглобин.
Гемоглобин выполняет в организме важную роль переносчика кислорода и принимает участие в транспорте углекислоты. Общее содержание гемоглобина равно 700г, а кровь взрослых людей содержит в среднем около 14 – 15%.
Гемоглобин представляет собой сложное химическое соединение (мол. вес. 68 800). Он состоит из белка глобина и четырёх молекул гема. Молекула гема, содержащая атом железа, обладает способностью присоединять и отдавать молекулу кислорода. При этом валентность железа, к которому присоединяется кислород, не изменяется, т. е. железо остаётся двухвалентным.
Оксигемоглобин несколько отличается по цвету от гемоглобина, поэтому артериальная кровь, содержащая оксигемоглобин, имеет ярко - алый цвет. Притом тем более яркий, чем полнее произошло её насыщение кислородом. Венозная кровь, содержащая большое количество восстановленного гемоглобина, имеет тёмно – вишнёвый цвет.
Метгемоглобин является окислительным гемоглобином, при образование которого меняется валентность железа: двухвалентное железо, входящее в молекулу гемоглобина, превращается в трёх валентное. В случае большого накопление в организме метгемоглобина отдача кислорода тканям становится невозможной и наступает смерть от удушения.
Карбоксигемоглобин представляет собой соединение гемоглобина с угарным газом. Это соединение примерно в 150 – 300 раз прочнее, чем соединение гемоглобина с кислородом. Поэтому примесь даже 0,1% угарного газа во вдыхаемом воздухе ведёт к тому, что 80% гемоглобина оказываются связанными с окисью углерода и не присоединяют кислород, что является опасным для жизни.
Миоглобин. В скелетной и сердечной мышце находится миоглобин. Он способен связывать до 14% общего количества кислорода в организме. Это его свойство играет важную роль в снабжение кислородом работающих мышц. Если при сокращение мышцы кровеносные капилляры её сжимаются и кровоток в некоторых участках мышцы прекращается, в течение некоторого времени сохраняется снабжение мышечных волокон кислородом.
Трансферрин.
Трансферрин – класс железо связывающих молекул. Наиболее изученный- это трансферрин сыворотки – является транспортным белком, переносящим железо из обломков гемоглобина селезёнки и печени в костный мозг, где на специальных его участках вновь синтезируется гемоглобин. Весь сывороточный трансферрин, единовременно связывая только 4 мг железа, ежедневно переносит в костный мозг около 40мг железа – весьма существенное доказательство его эффективности как транспортного белка. Больные с генетически обусловленными нарушениями синтеза трансферрина страдают железодефицитной анемией, нарушениями иммунной системы и интоксикацией от избытка железа!
Трансферрин – это гликопротеин с молекулярной массой около 80 000. Он состоит из одной полипептидной цепи, свёрнутой так, что она образует два компактных участка, каждый из которых способен связывать по одному иону железа (III). Правда, связывание железа возможно лишь при связывание аниона. В отсутствие подходящего аниона катион железа не присоединяется к трансфферину. В большинстве случаев в природе для этого используется карбонат, хотя активировать центр связывание металла способны и другие анионы, например оксалат, малонат, и цитрат.
Высокая устойчивость комплекса железа с трансферрином делает его отличным переносчиком, но зато и выдвигает проблему высвобождения железа из комплекса. Многие из хороших хелатирующих агентов малопригодны в качестве посредников при высвобождение железа. Наиболее эффективным из них оказался пирофосфат. Принимая во внимание существенную роль в связывание железа с транферрином, было бы логически предложить, что удаление аниона должно лежать в основе любого механизма высвобождение железа, однако никакой корреляции между способностью замещать карбонат в трансферриновом комплексе и их эффективностью как посредника в освобождение железа не найдено. В транспортной системе микробов отдача ионов железа переносчиком вызывается восстановлением их до Fe (II), но, как достоверно установлено, из трансферрина железо высвобождается в виде Fe (III).
Ферритин.
В органах млекопитающих железо в основном запасается в двух формах – ферритине и гемосидерине. Гемосидерин изучен не достаточно хорошо и, возможно, является продуктом распада ферритина. Ферритин в настоящее время охарактеризован довольно полно. Это водо-растворимый белок, состоящий из 24 одинаковых субъединиц, которые составляют пустотелую сферическую оболочку. Во внутренней полости находится мицелярное ядро, содержание железа в котором примерно 57%. Мицела может содержать до 4500 атомов железа, если ферритин полностью насыщен железом (что не является обязательным). Белковую оболочку пронизывают шесть каналов, которые служат для приёма и отдачи железа.
Приём железа происходит при каталитическом окислении аппоферритином Fe (II) в Fe (III), а высвобождение – при восстановление Fe (II) восстановленными флавинами. В большинстве клеток синтез ферритина значительно ускоряется в присутствии железа; в клетках печени крыс синтез субъединиц проходит за 2 – 3 мин.
 
МЕДЬ
 
Недостаток в организме меди приводит к деструкции кровеносных сосудов, патологическому росту костей, дефектам в соединительных тканях. Кроме того, считают, что дефицит меди служит одной из причин раковых заболеваний. В некоторых случаях поражение легких раком у людей пожилого возраста врачи связывают с возрастным понижением меди в организме. Многое известно и о транспорте меди в организме. Значительная часть меди находится в форме церулоплазмина. Содержание меди в организме варьируется от 100 до 150 мг с наибольшей концентрацией в стволе мозга. Большой расход меди ведёт к дефициту и неблагоприятен для человека. Прогрессирующие заболевание мозга у детей (синдром Менкеса) связано с дефицитом меди, так как при этом заболевание не хватает медьсодержащего фермента. Некоторые улучшения в состоянии этих больных было получено при введение меди. Избыточное количество меди в организме также неблагоприятно и ведет к развитию тяжелых заболеваний. При болезни Вильсона содержание меди увеличивается практически в 100 раз по сравнению с нормой. Медь обнаруживается во многих тканях, но особенно её много в печени, почках и мозге. Её можно увидеть на роговице в виде коричневых или зелёных кругов. В настоящие время установлено, что первоначально избыточные концентрации меди возникают в печени, затем в нервной системе, проявление расстройства этих органов наступают в том же порядке. Симптомы болезни Вильсона включают цирроз печен, нарушение координации, сильный тремор, прогрессирующие разрушение зубов. Степень выраженности симптомов зависит от количества содержание меди. Уменьшение клинической симптоматики может быть достигнуто использованием хелатирующих агентов, выводящих излишки запасов меди. Сам факт исчезновение симптомов после подобной терапии означает, что разрушение мозга является больше биологическим процессом, нежели структурным.
Несмотря на генетически зависимую природу заболевания, отложение меди в тканях наблюдается не всегда. Медь откладывается в определённые медь протеины печени, при болезни Вильсона происходит нарушение в синтезе апоцерулоплазмина таким образом, что медь не может связываться с этими белками и начинает откладываться в других местах. Понятно, что это не может служить единственным объяснением, так как у ряда пациентов уровень церулоплазмина понижен незначительно. Кроме того, в больших количествах медь обнаруживается в печени новорождённых, причём 2% общего количества меди связано с белком. Через три месяца концентрация снижается до нормального уровня, с того времени печень способна синтезировать белок цирулоплазмин. Существует другая точка зрения на болезнь Вильсона: структура белка металлотеонина при болезни Вильсона нарушена, и это ведёт к повышенному связыванию ионов меди, что в свою очередь ведёт к нарушению запасов и транспорта меди в организме. У пациентов с болезнью Вильсона было продемонстрировано повышенное связывание меди металлотионеином.
При лечение болезни Вильсона употребляют пищу, бедную медью, и применяют хелатирующие агенты, особенно пенисилламин.
При многих других заболеваниях наблюдается увеличение меди сыворотки: так при инфекционном гепатите наблюдается увеличение сыворотки меди в 3 раза по сравнению с нормой – 350мкг/100мл. это связано с накоплением церулоплазмина. Повышение меди в крови встречается при таких заболеваниях, как лейкемия, лимфома, ревматоидный артрит, цирроз, нефрит. Высокий уровень меди может быть связан с различными явлениями, и обнаружение высоких концентраций меди сыворотки представляет диагностическую ценность только при одновременном рассмотрение с данными других исследований. Анализ концентрации ионов меди необходимо проводить для оценки эффективности лечения, так как уровень меди прямо пропорционален тяжести заболевания. Это положение верно при гепатитах и злокачественных заболеваниях.
ЦИНК
Большое значение для организма человека имеет цинк, в среднем в организме находится около 3г, а суточное потребление 15мг. Дефицит цинка у человека выражается в потере аппетита, нарушении в скелете и оволосении, повреждении кожи, замедлении полового созревания. В нескольких случаях дефицит цинка привёл у людей к большим нарушениям в сенсорном аппарате, выражавшимся в извращение: вкуса и запаха. У этих пациентов симптомы анорексии и нарушение физиологических отравлений могут быть сняты добавками цинка в рацион. Важную роль цинк играет в заживлении ран. При дефиците цинка этот процесс идёт медленно в следствии снижения синтеза белка и коллагена. Из этого следует, что для улучшения заживления ран в рацион больным с дефицитом элемента следует добавлять цинк.
Мы уделили большое внимание роли металлов. Однако необходимо учитывать, что некоторые неметаллы также являются совершенно необходимыми для функционирования организма.
КРЕМНИЙ
Кремний является также необходимым микроэлементом. Это было подтверждено тщательным изучением питания крыс с использованием различных диет. Крысы заметно прибавили в весе при добавлении метасиликата натрия (Na2(SiO)3 . 9H2O) в их рацион (50мг на 100г). цыплятам и крысам кремний нужен для роста и развитие скелета. Недостаток кремния приводит к нарушению структуры костей и соединительной ткани. Как выяснилось кремний присутствует в тех участках кости, где происходит активная кальцинация, например в кости образующих клетках, остеобластах. С возрастом концентрация кремния в клетках падает.
О том, в каких процессах участвует кремний в живых системах, известно мало. Там он находится в виде кремневой кислоты и, наверное, участвует в реакциях сшивки углеродов. У человека богатейшим источником кремния оказалась гиалуроновая кислота пуповины. Она содержит 1,53мг свободного и 0,36мг связанного кремния на один грамм.
СЕЛЕН
Недостаток селена вызывает гибель клеток мышц и приводит к мускульной, в частности сердечной, недостаточности. Биохимическое изучение этих состояний привело к открытию фермента глутатионпероксидазе, разрушающей пероксиды Недостаток селена ведет к уменьшению концентрации этого фермента, что в свою очередь вызывает окисление липидов. Способность селена предохранять от отравления ртутью хорошо известна. Гораздо менее известен тот факт, что существует корреляция между высоким содержанием селена в рационе и низкой смертностью от рака. Селен входит в рацион человека в количестве 55 – 110мг в год, а концентрация селена в крови составляет 0,09 – 0,29мкг/см. При приёме внутрь селен концентрируется в печени и почках. Ещё один пример защитного действия селена от интоксикации лёгкими металлами является его способность предохранять от отравления соединениями кадмия. Оказалось, что как и в случае с ртутью, селен вынуждает эти токсические ионы связываться с ионными активными центрами, с теми, на которое их токсическое действие не влияет.
МЫШЬЯК
Несмотря на хорошо известные токсические действия мышьяка и его соединений, имеются достоверные данные согласно которым недостаток мышьяка приводит к понижению рождаемости и угнетению роста, а добавление в пищу арсенита натрия привело к увеличению скорости роста у человека.
ХЛОР и БРОМ
Анионы галогенов отличаются от всех тем, что они представляют собой простые, а не оксо – анионы. Хлор распространён чрезвычайно широко, он способен проходить сквозь мембрану и играет важную роль в поддержание осмотического равновесия. Хлор присутствует в виде соляной кислоты в желудочном соке. Концентрация соляной кислоты в желудочном соке человека равна 0,4-0,5%.
По поводу роли брома как микроэлемента существуют некоторые сомнения, хотя достоверно известно его седативное действие.
ФТОР
Для нормального роста фтор совершенно необходим, и его недостаток приводит к анемии. Большое внимание было уделено метаболизму фтора в связи с проблемой кариеса зубов, так как фтор предохраняет зубы от кариеса.
Кариес зубов изучен достаточно подробно. Он начинается с образования на поверхности зуба пятна. Кислоты, вырабатываемые бактериями, растворяют под пятном зубную эмаль, но, как ни странно, не с её поверхности. Часто верхняя поверхность остаётся неповреждённой до тех пор, пока участки под ней не окажутся полностью разрушенными. Предполагается, что на этой стадии фторид – ион может облегчать образования аппатита. Таким образом совершается реминелизация начавшегося повреждения.
Фтор используют для предотвращения разрушений зубной эмали. Можно вводить фториды в зубную пасту или же непосредственно обрабатывать ими зубы. Концентрация фтора, необходимая для предотвращения кариеса, составляет в питьевой воде около 1мг/л, но уровень потребления зависит не только от этого. Применение высоких концентраций фторидов (более8мг/л) может неблагоприятным образом повлиять на тонкие равновесные процессы образования костной ткани. Чрезмерное поглощение фторидов приводит к фторозу. Фтороз приводит к нарушениям в работе щитовидной железы, угнетению роста и поражению почек. Длительное воздействие фтора на организм прводит к минерализации тела. В итоге деформируются кости, которые даже могут срастись, и происходит кальцификация связок.
ЙОД
 
Основной физиологической роль йода является участие в метаболизме щитовидной железы и присущих ей гормонах. Способность щитовидной железы аккумулировать йод присуща также слюнным и молочным железам. А также некоторым другим органам. В настоящее время, однако, считают, что ведущую роль йод играет только в жизни деятельности щитовидной железы.
Недостаток йода приводит к возникновению характерных симптомов: слабости, пожелтению кожи, ощущение холода и сухости. Лечение тиреоидными гормонами или йодом устраняет эти симптомы. Недостаток тереоидных гормонов может привести к увеличению щитовидной железы. В редких случаях (отягощение в организме различных соединений, мешающих поглощению йода, например тиоцианата или антитиреоидного агента – гоитрина, имеющегося в различных видах капусты) образуется зоб. Недостаток йода особенно сильно отражается на здоровье детей – они отстают в физическом и умственном развитии. Йод дефицитная диета во время беремености приводит к рождению гипотироидных детей (кретинов).
Избыток гормонов щитовидной железы приводит к истощению, нервозности, тремору, потере веса и повышенной потливости. Это связано с увеличением пероксидазной активности и вследствие этого с увеличением йодирования тиреоглобулинов. Избыток гормонов может быть следствием опухоли щитовидной железы. При лечение используют радиоактивные изотопы йода, легко усваивающиеся клетками щитовидной железы.
 


Выводы

Неорганические соединения, составляющие только 6% от общего веса человека, являются незаменимыми веществами, обеспечивающие гомеостаз организма. Все химические элементы делятся на макро-, микро- и ультрамикро элементы. Любое изменение содержания химических веществ как в сторону увеличения так и уменьшению ведет к нарушению обмена веществ.
Среди многочисленного ряда регуляций, свойственных высшим животным и человеку, наиболее точно работают те, которые обеспечивают постоянство минерального состава плазмы крови. Уже у прототипов животного мира на самых ранних этапах эволюции произошла адаптация клеток и всех сложных внутриклеточных биохимических процессов, обеспечивающих жизнь, к определенной пропорции ионов во внешней среде. Биологическая эволюция шла под непрерывным воздействием изменений неживой природы. Для одних существ она заключалась в перестройке клеточных процессов, следующих за изменением солевого состава водной среды. У других же, давших прогрессивно развивающуюся ветвь животного мира, появились специальные физиологические механизмы, позволяющие сохранять постоянство состава межклеточной жидкости и плазмы крови (так называемой внутренней среды организма) и таким образом обеспечивать в изменяющейся внешней среде оптимальные условия для функционирования всех клеток тела, прежде всего клеток мозга. Поскольку клетка отделена от внеклеточной жидкости мембраной, которую пронизывают белковые структуры — поры, легко проницаемые для воды, но не для большинства других компонентов, то при наличии разницы концентраций веществ вода переходит в сектор с более высокой концентрацией раствора по законам осмоса. Любое изменение объема клетки (разбухание при поступлении воды или сморщивание при ее потере) будет сопровождаться нарушением биохимических внутриклеточных процессов.
 


Список использованных источников

1) Зубков А.А. и Коцицкий Г.И. Внутренняя секреция. Физиология человека. М.: Медицина, 1972, стр. 296.
2) Косицкий Г.И. Физиология системы крови. Физиология человека. М.: Медицина, 1972, стр. 331.
3) Кукушкин Ю.Н. Химические элементы в организме человека Соросовский образовательный журнал, №5 1998, стр. 54 – 58.
4) МакОлифф К. Методы и достижения бионеорганической химии. М.: Мир, 1978.
5) Ходоров Б.И. Общая физиология возбудимых тканей Физиология человека. М.: Медицина, 1972, стр. 55.

6) Хьюз М. Неорганическая химия биологических процессов. М. Мир, 1983.

3) Эйхгорн Г. Неорганическая биохимия. М.: Мир, 1978.

 




и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.