На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


реферат Физическое моделирование

Информация:

Тип работы: реферат. Добавлен: 13.11.2012. Сдан: 2012. Страниц: 9. Уникальность по antiplagiat.ru: < 30%

Описание (план):


?Введение
 
 
          Физическое моделирование – один из методов научных исследований, предполагающий замену изучения интересующего натурного образца объекта или реализуемого с его помощью технологического процесса проведением экспериментов на модели с обеспечением условий протекания явлений, имеющих ту же физическую природу. В данной работе приведены краткие сведения из теории подобия.критерии газодинамического подобия.
          Как известно, гидродинамические, тепловые и химические процессы, протекающие в металлургических агрегатах, характеризуются высокими температурами, воздействием агрессивных шлаков и выделением большого количества вредных газов и абразивных пылевидных частиц. Выполнение экспериментальных работ, связанных, прежде всего, с изучением явлений тепломассопереноса, в таких условиях практически невозможно по соображениям безопасности персонала. Кроме того, серьезным препятствием для проведения исследований на действующих промышленных агрегатах является такой фактор, как потеря производственного времени.
         В подобной ситуации, а также при создании новой техники на стадии проработки конструкции проектируемой машины или агрегата наиболее приемлемым способом решения возникающих проблем следует считать применение физического моделирования.
       Физическое моделирование - один из методов научных исследований, предполагающий замену изучения интересующего натурного образца объекта или реализуемого с его помощью технологического процесса проведением экспериментов на модели с обеспечением условий протекания явлений, имеющих ту же физическую природу.
         Физическое моделирование предусматривает воссоздание в физической модели тех же самых или аналогичных физических полей, что действуют и в объекте натуры, лишь измененных по своим абсолютным значениям в соответствии с масштабом моделирования. Одним из основных преимуществ физического моделирования является возможность осуществления прямых наблюдений за моделируемыми процессами и явлениями, иногда это преимущество является решающим.
         В физическом моделировании выделяется аналоговое моделирование, которое предусматривает замену в модели по сравнению с натурой одних физических полей другими, например замену натурного поля механических напряжений электрическим полем в модели или замену поля механических напряжений картиной оптической анизотропии в оптически чувствительных прозрачных материалах. Таким образом, на аналоговых моделях изучают закономерности явлений и процессов, протекающих в натурных объектах, используя математическую аналогию различных по физической природе процессов, т. е. математическую тождественность основных законов, совпадение дифференциальных уравнений, описывающих эти процессы.
       В отличие от физического моделирования математическое моделирование предусматривает построение некоторых идеализированных схем или, другими словами, математических моделей исследуемых процессов или явлений и их исследование аналитическими методами. Исходя из этого, методы математического моделирования относят к теоретическим методам исследования. Такая точка зрения доминирует в геомеханике.
       Вообще моделирование получило в геомеханике широкое развитие вследствие ряда объективных обстоятельств.
         Как уже указывалось, массив горных пород является весьма сложной средой, которая к тому же находится под одновременным воздействием большого числа факторов как естественного, так и техногенного происхождения.
        В результате в различных частях одного и того же участка породного массива при ведении горных работ одновременно могут происходить процессы деформирования самого различного характера - процессы упругого деформирования, необратимые пластические деформации и, наконец, процессы смещений и разрушений пород с разрывом сплошности.              Кроме того, в каждой конкретной точке выработки или массива имеет место своя конкретная ситуация, своё сочетание действующих факторов и поэтому результаты натурных исследований, как правило, всегда имеют некоторый, иногда весьма существенный разброс, и вследствие этого могут обладать недостаточной общностью.
        К этому следует добавить, что в натурных условиях обычно весьма ограничены возможности варьирования параметрами системы, технологией и последовательностью ведения горных работ, тогда как при моделировании можно проследить влияние основных параметров в самых широких пределах.
        Вместе с тем при построении любого вида моделей воспроизводятся только общие, принципиально существенные особенности изучаемых явлений и чётко отбираются действующие факторы, которыми в процессе модельных исследований можно варьировать. Применительно к такому объекту, как горные породы, например, невозможно воспроизвести микротрещиноватость и мелкоблоковую трещиноватость, даже при очень крупных масштабах моделирования.
         Таким образом, учитывая преимущества и недостатки обоих подходов, можно сказать, что оптимальное сочетание натурных исследований с моделированием позволяет всесторонне исследовать изучаемые процессы и явления, выявить как общие закономерности, так и влияние отдельных факторов и при этом существенно сэкономить материальных затраты и время.
       
 
 
Физическое моделирование
 
 
 
 
        Физическое моделирование бывает двух родов: с увеличением и с уменьшением масштаба системы. В геомеханике, изучающей, как правило, объекты весьма больших размеров, применяют моделирование второго рода, т. е. с уменьшением абсолютных размеров объектов.
         При решении задач геомеханики методами моделирования обычно испытывают серию моделей, причем используя наиболее эффективный для решения поставленной задачи метод, испытывают модели разных масштабов. Например, сначала на моделях мелкого масштаба изучают общие закономерности процессов геомеханики в пределах всего участка массива, подверженного влиянию выработки, а затем на моделях крупного масштаба с большей детальностью изучают закономерности процессов в более локальной области массива, например, процессов взаимодействия пород кровли с крепью очистной выработки. При этом обычно в модели крупного масштаба воспроизводят лишь некоторую часть массива, а действие веса остальной части массива до поверхности компенсируют с помощью пригрузки, осуществляемой нагрузочными приспособлениями различного типа.
         Вид моделирования, который состоит в замене изучения некоторого объекта или явления экспериментальным исследованием его модели, имеющей ту же физическую природу.
         В науке любой эксперимент, производимый для выявления тех или иных закономерностей изучаемого явления или для проверки правильности и границ применимости найденных теоретическим путём результатов, по существу представляет собою моделирование, т. к. объектом эксперимента является конкретная модель, обладающая необходимыми физическими свойствами, а в ходе эксперимента должны выполняться основные требования, предъявляемые к М. ф. В технике М. ф. используется при проектировании и сооружении различных объектов для определения на соответствующих моделях тех или иных свойств (характеристик) как объекта в целом, так и отдельных его частей. К М. ф. прибегают не только по экономическим соображениям, но и потому, что натурные испытания очень трудно или вообще невозможно осуществить, когда слишком велики (малы) размеры натурного объекта или значения других его характеристик (давления, температуры, скорости протекания процесса и т. п.).
         В основе М. ф. лежат Подобия теория и Размерностей анализ. Необходимыми условиями М. ф. являются геометрическое подобие (подобие формы) и физическое подобие модели и натуры: в сходственные моменты времени и в сходственных точках пространства значения переменных величин, характеризующих явления для натуры, должны быть пропорциональны значениям тех же величин для модели. Наличие такой пропорциональности позволяет производить пересчёт экспериментальных результатов, получаемых для модели, на натуру путём умножения каждой из определяемых величин на постоянный для всех величин данной размерности множитель — коэффициент подобия.
         Поскольку физические величины связаны определёнными соотношениями, вытекающими из законов и уравнений физики, то, выбрав некоторые из них за основные, можно коэффициенты подобия для всех других производных величин выразить через коэффициенты подобия величин, принятых за основные. Например, в механике основными величинами считают обычно длину l, время t и массу m. Тогда, поскольку скорость v = l/t, коэффициент подобия скоростей kv = vн/vм (индекс «н» у величин для натуры, «м» — для модели), можно выразить через коэффициенты подобия длин kl = lн/lм и времён kt = tн/tм в виде kv = kl/kt. Аналогично, т. к. на основании второго закона Ньютона сила F связана с ускорением w соотношением F = mw, то kF = km kw (где, в свою очередь, kw = kv/kt) и т. д. Из наличия таких связей вытекает, что для данного физического явления некоторые безразмерные комбинации величин, характеризующих это явление, должны иметь для модели и натуры одно и то же значение. Эти безразмерные комбинации физических величин называются критериями подобия. Равенство всех критериев подобия для модели и натуры является необходимым условием М. ф. Однако добиться этого равенства можно не всегда, т. к. не всегда удаётся одновременно удовлетворить всем критериям подобия.
Чаще всего к М. ф. прибегают при исследовании различных механических (включая гидроаэромеханику и механику деформируемого твёрдого тела), тепловых и электродинамических явлений. При этом число и вид критериев подобия для каждого моделируемого явления зависит от его природы и особенностей. Так, например, для задач динамики точки (или системы материальных точек), где все уравнения вытекают из второго закона Ньютона, критерием подобия является число Ньютона Ne = Ft2/ml и условие М. состоит в том, что
                                             
        
        Для колебаний груза под действием силы упругости F = cl равенство (1) приводит к условию t2нсн/mн = t2мсм/mм, что, например, позволяет по периоду колебаний модели определить период колебаний натуры; при этом явление не зависит от линейного масштаба (от амплитуды колебаний). Для движения в поле тяготения, где F = km/l2, условием подобия является kнt2н/l3н = kмt2м/l3м (явление не зависит от масс). При движении в одном и том же поле тяготения, например Солнца, kм = kн, и полученное соотношение даёт третий закон Кеплера для периода обращения. Отсюда, считая одну из планет «моделью», можно, например, найти период обращения, любой другой планеты, зная её расстояние от Солнца.
        Для непрерывной среды при изучении её движения число критериев подобия возрастает, что часто значительно усложняет проблему М. ф. В гидроаэромеханике основными критериями подобия являются Рейнольдса число Re, Маха число М, Фруда число Fr, Эйлера число Еu, а для нестационарных (зависящих от времени) течений ещё и Струхаля число St. При М. ф. явлений, связанных с переносом тепла в движущихся жидкостях и газах или с физико-химическими превращениями компонентов газовых потоков и др., необходимо учитывать ещё ряд дополнительных критериев подобия.
         Создаваемые для гидроаэродинамического моделирования экспериментальные установки и сами модели должны обеспечивать равенство соответствующих критериев подобия у модели и натуры. Обычно это удаётся сделать в случаях, когда для течения в силу его особенностей сохраняется лишь один критерий подобия. Так, при М. ф. стационарного течения несжимаемой вязкой жидкости (газа) определяющим будет параметр Re и необходимо выполнить одно условие
       
                                      
    
   где ? — плотность, ? — динамический коэффициент вязкости среды. При уменьшенной модели (lм < lн) это можно сделать, или увеличивая скорость (vм > vн), или используя для моделирования другую жидкость, у которой, например, ?м > ?н, а ?м ? ?н. При аэродинамических исследованиях увеличивать vм в этом случае нельзя (нарушится условие несжимаемости), но можно увеличить ?м, используя аэродинамические трубы (См. Аэродинамическая труба) закрытого типа, в которых циркулирует сжатый воздух.
         Когда при М. ф. необходимо обеспечить равенство нескольких критериев, возникают значительные трудности, часто непреодолимые, если только не делать модель тождественной натуре, что фактически означает переход от М. ф. к натурным испытаниям. Поэтому на практике нередко прибегают к приближённому моделированию, при котором часть процессов, играющих второстепенную роль, или совсем не моделируется, или моделируется приближённо. Такое М. ф. не позволяет найти прямым пересчётом значения тех характеристик, которые не отвечают условиям подобия, и их определение требует соответствующих дополнительных исследований. Например, при М. ф. установившихся течений вязких сжимаемых газов необходимо обеспечить равенство критериев Re и М и безразмерного числа ? = cp/cv (cp и cv — удельные теплоёмкости газа при постоянном давлении и постоянном объёме соответственно), что в общем случае сделать невозможно. Поэтому, как правило, обеспечивают для модели и натуры лишь равенство числа М, а влияние на определяемые параметры различий в числах Re и ? исследуют отдельно или теоретически, или с помощью других экспериментов, меняя в них в достаточно широких пределах значения Re и ?.
         Для твёрдых деформируемых тел особенности М. ф. тоже зависят от свойств этих тел и характера рассматриваемых задач. Так, при моделировании равновесия однородных упругих систем (конструкций), механические свойства которых определяются модулем упругости (См. Модули упругости) (модулем Юнга) Е и безразмерным Пуассона коэффициентом ?, должны выполняться 3 условия подобия:
       
                                       
   
 
    где g — ускорение силы тяжести (? = ?g — удельный вес материала). В естественных условиях gм = gн = g, и получить полное подобие при lм ? lн можно, лишь подобрав для модели специальный материал, у которого ?м, Ем и ?м будут удовлетворять первым двум из условий (3), что практически обычно неосуществимо.
         В большинстве случаев модель изготовляется из того же материала, что и натура. Тогда ?м = ?н, Ем = Ен и второе условие даёт gмlм = gнlн. Когда весовые нагрузки существенны, для выполнения этого условия прибегают к т. н. центробежному моделированию, т. е. помещают модель в центробежную машину, где искусственно создаётся приближённо однородное силовое поле, позволяющее получить gм > gн и сделать lм < lн. Если же основными являются другие нагрузки, а весом конструкции и, следовательно, учётом её удельного веса ? = ?g можно пренебречь, то приближённое М. ф. осуществляют при gм = gн = g, удовлетворяя лишь последнему из соотношений (3), которое даёт Fм/l2м = Fн/l2н, следовательно, нагрузки на модель должны быть пропорциональны квадрату её линейных размеров. Тогда модель будет подобна натуре и если, например, модель разрушается при нагрузке Fкр, то натура разрушается при нагрузке Fкрlн/lм. Неучёт в этом случае весовых нагрузок даёт следующее. Поскольку эти нагрузки имеют значения ?l3, а последнее из условий (3) требует пропорциональности нагрузок Р, то при lм < lн весовая нагрузка на модель будет меньше требуемой этим условием, т. е. М. ф. не будет полным и модель, как недогруженная, будет прочнее натуры. Это обстоятельство тоже можно учесть или теоретическим расчётом или дополнительными экспериментами.
         Одним из видов М. ф., применяемым к твёрдым деформируемым телам, является Поляризационно-оптический метод исследования напряжений, основанный на свойстве ряда изотропных прозрачных материалов становиться под действием нагрузок (т. е. при деформации) анизотропными, что позволяет исследовать распределение напряжений в различных деталях с помощью их моделей из прозрачных материалов.
         При М. ф. явлений в других непрерывных средах соответственно изменяются вид и число критериев подобия. Так, для пластичных и вязкопластичных сред в число этих критериев наряду с параметрами Фруда, Струхаля и модифицированным параметром Рейнольдса входят параметры Лагранжа, Стокса, Сен-Венана и т. д.
         При изучении процессов теплообмена тоже широко используют М. ф. Для случая переноса тепла конвекцией (См. Конвекция) определяющими критериями подобия являются Нуссельта число Nu = ?l/ ?, Прандтля число Pr = ?/a, Грасхофа число Gr = ?gl3 ?T/?2, а также число Рейнольдса Re, где ? — коэффициент теплоотдачи, а — коэффициент температуропроводности, # — коэффициент теплопроводности среды (жидкости, газа), ? — кинематический коэффициент вязкости, ? — коэффициент объёмного расширения, ?Т — разность температур поверхности тела и среды. Обычно целью М. ф. является определение коэффициента теплоотдачи, входящего в критерий Nu, для чего опытами на моделях устанавливают зависимость Nu от других критериев. При этом в случае вынужденной конвекции (например, теплообмен при движении жидкости в трубе) становится несущественным критерий Gr, а в случае свободной конвекции (теплообмен между телом и покоящейся средой) — критерий Re. Однако к значительным упрощениям процесса М. ф. это не приводит, особенно из-за критерия Pr, являющегося физической константой среды, что при выполнении условия Prм = Prн практически исключает возможность использовать на модели среду, отличную от натурной. Дополнительные трудности вносит и то, что физические характеристики среды зависят от её температуры. Поэтому в большинстве практически важных случаев выполнить все условия подобия не удаётся; приходится прибегать к приближённому моделированию. При этом отказываются от условия равенства критериев, мало влияющих на процесс, а др. условиям (например, подобие физических свойств сред, участвующих в теплообмене) удовлетворяют лишь в среднем. На практике часто используют также т. н. метод локального теплового моделирования, идея которого заключается в том, что условия подобия процессов для модели и натуры выполняются только в той области модели, где исследуется процесс теплообмена. Например, при исследовании теплоотдачи в системе однотипных тел (шаров, труб) в теплообмене на модели может участвовать лишь одно тело, на котором выполняют измерения, а остальные служат для обеспечения геометрического подобия модели и натуры.
         В случаях переноса тепла Теплопроводностью (кондукцией) критериями подобия являются Фурье число Fo = at0/l2 и число Био Bi = ?l/?, где t0 — характерный промежуток времени (например, период). Для апериодических процессов (нагревание, охлаждение) t0 обычно отсутствует и параметр Fo выпадает, а отношение at/l2 определяет безразмерное время. При М. ф. таких процессов теплообмена удаётся в широких пределах изменять не только размеры модели, но и темп протекания процесса.
         Однако чаще для исследования процессов переноса тепла теплопроводностью применяют Моделирование аналоговое.
         Электродинамическое моделирование применяется для исследования электромагнитных и электромеханических процессов в электрических системах. Электродинамическая модель представляет собой копию (в определённом масштабе) натурной электрической системы с сохранением физической природы основных её элементов. Такими элементами модели являются синхронные генераторы, трансформаторы, линии передач, первичные двигатели (турбины) и нагрузка (потребители электрической энергии), но число их обычно значительно меньше, чем у натурной системы. Поэтому и здесь моделирование является приближённым, причём на модели по возможности полно представляется лишь исследуемая часть системы.
         Особый вид М. ф. основан на использовании специальных устройств, сочетающих физические модели с натурными приборами. К ним относятся стенды испытательные (См. Стенд испытательный) для испытания машин, наладки приборов и т. п., тренажеры для тренировки персонала, обучаемого управлению сложными системами или объектами, имитаторы, используемые для исследования различных процессов в условиях, отличных от обычных земных, например при глубоком вакууме или очень высоких давлениях, при перегрузках и т. п. (см. Барокамера, Космического полёта имитация).
        Указанная выше идентичность математического описания различных явлений позволяет заменить физическое моделирование математическим. С помощью ЭВМ это делается быстро и экономно. Принцип работы этих машин состоит в замене физических величин , входящих в уравнения процесса, величинами электрическими — напряжением постоянного тока . Каждой физической переменной в процессе соответствует свое значение машинной переменной. Соотношения между ними называются масштабными коэффициентами. При этом необходимо соблюдать условие, чтобы на выходе из решающих блоков напряжение было не больше f/max = ±100 В.
 
 
Основные этапы физического моделирования
 
        Физическое моделирование как метод исследования включает в общем случае пять основных этапов [56]: постановку задачи; вывод и анализ условия подобия; выбор конструкции и расчет параметров модели объекта исследования; проведение экспериментов на модели; обработка полученных результатов.
        При постановке задачи необходимо исходить из того, что главная цель моделирования заключается в изучении основных закономерностей исследуемого процесса, а результаты, полученные в ходе эксперимента, после обобщений могли бы быть использованы в реальных промышленных условиях. Достичь намеченной цели можно в том случае, если проведение опыта будет осуществляться с учетом основных положений теории подобия.
       Цель исследования в каждом конкретном случае может быть разной: от стремления получить эмпирические данные, полезные для использования в инженерной практике или позволяющие выполнить проверку теоретических положений, до изучения в общих чертах физической картины разработанного процесса. Однако даже когда не требуется получение особо точных результатов (приближенное или качественное моделирование), необходим анализ условий подобия. На этом этапе на основании совокупности выбранных критериев рассматривается возможность упрощения условий подобия. При этом оцениваются численные значения критериев и определяется их значимость, что позволяет часть из них отнести к разряду несущественных, т.е. не требующих обеспечения равенства для модели и оригинала.
       Выбор конструкции модели во многом зависит от характерных особенностей моделируемого процесса, а также от того, в каком виде необходимо получить интересующую информацию. К примеру, если исследуемый процесс обусловлен интенсивным движением жидкостных потоков и в итоге требуется получение картин их распределения в различных зонах перемешиваемой ванны, модель конструктивно должна обеспечивать возможность визуального контроля и фотографирования потоков.
       Модель изготавливается геометрически подобной натуральному образцу по внутренним контурам. При этом используются всевозможные материалы, но чаще всего применяют органическое стекло.
       Подготовка модели к проведению исследований заключается в выборе варианта рационального размещения применяемой аппаратуры, обеспечении возможности быстрой замены моделирующей расплав жидкости, поддержании требуемой освещенности объектов, подлежащих фотографированию, и так далее.
       Проведению исследований на модели предшествует планирование эксперимента, настройка регистрирующей аппаратуры и при необходимости тарировка преобразователей измерительных систем.
      Собственно физическое моделирование в зависимости от решаемых задач может проводиться по уже известным или специально разработанным методикам с применением широкого набора контрольных датчиков и электронных приборов, предназначенных для регистрации параметров процессов, протекающих в моделях.
 
       Обработку полученных результатов осуществляют с использованием методов математической статистики и привлечением средств вычислительной техники. При этом необходимо выделить впервые зафиксированные данные, попытаться дать им полное объяснение и сопоставить их с уже известными результатами .После обобщения данные должны быть представлены в виде таблиц и графиков.
 
 
Основные положения теории подобия.
 
        В основе методов моделирования лежит учение о подобии, основы которого заложены еще И Ньютоном.Чтобы получить корректные результаты необходимо обеспечить подобие модели и натуры, т. е.
 
а) подобие геометрических свойств систем;
б) пропорциональность физических констант, имеющих существенное значение в изучаемом процессе;
в) подобие начального состояния систем;
г) подобие условий на границах систем в течение всего рассматриваемого периода процесса;
д) равенство определяющих критериев, при этом определяющими критериями подобия являются те, которые имеют существенное значение в изучаемом процессе.
 
        При характеристике того или иного механического процесса механическое подобие может быть определено заданием переходных множителей или масштабов для длин (геометрическое подобие), для времени (кинематическое подобие) и для масс (динамическое подобие).
       Для двух подобных систем условие геометрического подобия состоит в том, что все размеры пространства, занятого системой в модели, и размеры отдельных элементов модели изменены в определенное число mL раз по сравнению с соответствующими размерами натуры:
 
                           
                                                              Lм / Lн= mL              ( 1.1)
 
где Lм и Lн - соответственно линейные размеры модели и натуры.
 
      Условие кинематического подобия этих систем состоит в том, что любые сходственные точки (частицы) систем, двигаясь по геометрически подобным траекториям, проходят геометрически подобные пути в промежутки времени Т, отличающиеся постоянным множителем mТ
 
                                                           Тм / Тн= mТ                (1.2)
 
     Условие динамического подобия систем состоит в том, что массы любых сходственных частиц этих систем отличаются друг от друга постоянным множителем mМ
 
                                                           Мм / Мн= mМ                (1.3)
 
      Особенности объектов геомеханики состоят в том, что при заданном геометрическом масштабе моделирования (mL = Lм / Lн) для обеспечения механического подобия модели и натуры необходимо отказаться в модели либо от равенства sм = sн, либо от равенства gм = gн, либо от равенства обоих показателей.
       Если сохранить в модели равенство напряжений натуре (другими словами, равенство механических свойств материала модели и натуры), т.е. условие sм = sн, то необходимо обеспечить, чтобы объемный вес материала был больше в число раз, обратное геометрическому масштабу.
        Например, при геометрическом масштабе модели mL = Lм / Lн = 1/100 объемный вес материала модели должен быть равен
 
                                                       Lн                 1
 
                                          gм = --------- gн = --------- gн = 100gн.         (1.4)                                          
                                                       Lм               mL
 
Условие (1.4) можно выполнить, применив в модели натуральные горные породы и придав им фиктивный объемный вес (100gн в приведенном случае при mL = 1/100) с помощью инерционных сил, которые могут быть созданы, например, путем вращения модели в центрифуге при соответствующем значении центробежной силы. Этот метод был предложен в 1932 г. профессорами Г. И. Покровским и Н. Н. Давиденковым и носит название метода центробежного моделирования.
       Если же в модели применить некоторые искусственные материалы, механические характеристики которых ниже соответствующих характеристик моделируемых горных пород, т. е. отказаться от равенства sм = sн, то для обеспечения условий механического подобия модели и натуры необходимо
 
 
 
                                                       Lм          gм
 
                                                sм = ------- . -------sн.                          (1.5)
 
                                                         Lн          gн
 
 
       Искусственные материалы, соответствующие механические характеристики которых в принятом геометрическом масштабе моделирования удовлетворяют по отношению к моделируемым горным породам условию (1.5), называют материалами - эквивалентами данным горным породам или эквивалентными материалами. Метод же моделирования, основанный на применении эквивалентных материалов и предложенный в 1936 г. проф. Г. Н. Кузнецовым, носит название метода эквивалентных материалов.
     При моделировании системы в соответствующем геометрическом масштабе продолжительность тех или иных процессов обычно изменяется. В связи с этим существенно важное значение имеет вопрос о масштабе времени при моделировании, который в общем случае определяется, исходя из приведенного выше условия кинематического подобия двух систем (1.2).
     В тех случаях, когда на моделях воспроизводят сразу несколько процессов, масштабы времени для отдельных из них могут оказаться неодинаковыми В таких случаях масштаб времени устанавливают, исходя из соблюдения подобия в протекании лишь тех процессов, которые в решаемой задаче являются основными и не учитывают малозначащие элементы.
     Нагружение физических моделей осуществляется:
·созданием усилий на контуре модели при помощи механических и гидравлических домкратов или заданием деформаций контура посредством жёстких ограничителей;
·собственным весом модели массива;
·посредством центробежных сил, возникающих в центрифуге;
·с помощью сил сопротивления сдвигу, как это делается в моделях с фрикционной базой.
    Две физические системы будут геометрически подобными, если между их соответствующими линейными размерами существует постоянное соотношение
 
       
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.