На бирже курсовых и дипломных проектов можно найти образцы готовых работ или получить помощь в написании уникальных курсовых работ, дипломов, лабораторных работ, контрольных работ, диссертаций, рефератов. Так же вы мажете самостоятельно повысить уникальность своей работы для прохождения проверки на плагиат всего за несколько минут.

ЛИЧНЫЙ КАБИНЕТ 

 

Здравствуйте гость!

 

Логин:

Пароль:

 

Запомнить

 

 

Забыли пароль? Регистрация

Повышение уникальности

Предлагаем нашим посетителям воспользоваться бесплатным программным обеспечением «StudentHelp», которое позволит вам всего за несколько минут, выполнить повышение уникальности любого файла в формате MS Word. После такого повышения уникальности, ваша работа легко пройдете проверку в системах антиплагиат вуз, antiplagiat.ru, etxt.ru или advego.ru. Программа «StudentHelp» работает по уникальной технологии и при повышении уникальности не вставляет в текст скрытых символов, и даже если препод скопирует текст в блокнот – не увидит ни каких отличий от текста в Word файле.

Результат поиска


Наименование:


реферат Микробный белок. Его свойства и основные продуценты

Информация:

Тип работы: реферат. Добавлен: 13.11.2012. Сдан: 2012. Страниц: 7. Уникальность по antiplagiat.ru: < 30%

Описание (план):


?ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ  БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ “ИЖЕВСКАЯ ГОСУДАРСТВЕННАЯ СЕЛЬСКОХОЗЯЙСТВЕННАЯ АКАДЕМИЯ”
 
             
 
ЗООИНЖЕНЕРНЫЙ ФАКУЛЬТЕТ
 
 
КАФЕДРА ТЕХНОЛОГИИ ПЕРЕРАБОТКИ ПРОДУКЦИ ЖИВОТНОВОДСТВА
 
 
Реферат
 
на тему «Микробный белок. Его свойства и основные продуценты»
 
 
                                                     Исполнитель: Перминова М. В.
                                                  студентка 253 группы 5 курса
                                                зооинженерного факультета
                                       Проверил: Уткина О.С.
                                                        ст. преподаватель кафедры ТППЖ
                                                                    «   »                                   2012 г.
            Оценка                                     
                                                                  Подпись                                        
 
 
Ижевск 2012
 
 
Содержание
 
Введение…………………………………………………………………..……3
1.     Свойства белка одноклеточных организмов…………………………..4
2.     Субстраты для культивирования микроорганизмов………………….6
3.     Основные продуценты микробного белка……………………………12
3.1 Кормовые дрожжи……………………………………………..…..12
3.2 Бактерии…………………………………………………………….16
3.3 Одноклеточные водоросли…………………………………...……17
3.4 Микроскопические грибы…………………………………..……..19
Заключение…………………………………………………………………….22
Список используемой литературы……………………………………….…..23
 
 


Введение
 
Микроорганизмы начали использовать в производстве белковых  продуктов задолго до возникновения микробиологии.  Достаточно  упомянуть  всевозможные разновидности сыра, а также продукты, получаемые  путем  ферментации  соевых бобов. И в первом, и во втором случае питательной  основой  является  белок. При выработке  этих  продуктов  при  участии  микробов  происходит  глубокое изменение свойств белоксодержащего  сырья.  В  результате  получают  пищевые продукты, которые можно дольше хранить (сыр) или удобнее потреблять  (соевый творог). Микробы играют роль  в  производстве  некоторых  мясных  продуктов, предназначенных  для  хранения.  Так,  при  изготовлении  некоторых   сортов колбасы  используется  кислотное  брожение,  обычно  при  участии  комплекса молочнокислых  бактерий.  Образовавшаяся  кислота  способствует  сохранности продукта и вносит вклад в формирование его особого вкуса.
       Этим,  пожалуй,  и  ограничивается  использование  микроорганизмов  в переработке   белков.   Возможности   современной   биотехнологии   в   этих производствах невелики, за исключением сыроделия. Другое дело –  выращивание и  сбор  микробной  массы,  перерабатываемой  в  пищевые   продукты. В специальных опытах была проведена пищевая и токсикологическая оценка  белковой микробной массы, которая показывает, что клетки некоторых микроорганизмов можно использовать в качестве концентрированных кормовых добавок, не уступающих по биологической ценности белков соевому шроту или рыбной муке. Этим объясняется большой интерес к производству микробного белка.
 
 
3
 


    Свойства белка одноклеточных организмов
 
По многим важным показателям биомасса микроорганизмов может  обладать весьма  высокой  питательной  ценностью.  В  немалой  степени  эта  ценность определяется белками: у большинства видов они составляют  значительную  долю сухой  массы  клеток (до 60 %).  На  протяжении  десятилетий  активно  обсуждаются   и исследуются  перспективы  увеличения  доли  белка  микроорганизмов  в  общем балансе производимого во всем мире белка.
Микроорганизмы в качестве источников кормового белка имеют ряд преимуществ по сравнению с растительными и даже животными организмами. Они отличаются устойчивым содержанием белков, тогда как в растениях концентрация белковых веществ значительно варьирует в зависимости от условий выращивания, климата, погоды, типа почвы, агротехники и др. Наряду с белками в микробных клетках образуются и другие ценные в питательном отношении вещества: легкоусвояемые углеводы, липиды с повышенным содержанием ненасыщенных жирных кислот, витамины, макро- и микроэлементы.
Таблица 1 – Содержание незаменимых аминокислот в белках некоторых микроорганизмов (в г на 100 г белка)
 
аминокислота
дрожжи
бактерии
водоросли
грибы
Соевый шрот
Эталон ФАО
Лизин
6-8
6-7
5-10
3-7
6,4
4,2
Триптофан
1-1,5
1-1,4
0,3-2,1
1,4-2
1,4
1,4
Метионин
1-3
2-3
1,4-2,5
2-3
1,3
2,9
Треонин
4-6
4-5
3-6
3-6
4,0
2,8
Валин
5-7
4-6
5-7
5-7
5,3
4,2
Лейцин
6-9
5-11
6-10
6-9
7,7
4,8
Изолейцин
4-6
5-7
3,5-7
3-6
5,3
4,2
фенилаланин
3-5
3-4
3-5
3-6
5,0
2,8
 
При использовании микроорганизмов на ограниченной площади можно организовать промышленное производство и получать большое количество кормовых концентратов в любое время года, причем микробные клетки способны синтезировать белки из отходов сельского хозяйства и промышленности и, таким образом, позволяют одновременно решать другую важную проблему — утилизацию этих отходов в целях охраны окружающей среды.
Микроорганизмы имеют еще одно ценное преимущество — способность очень быстро наращивать белковую массу. Например, растения сои массой 500 кг в фазе созревания семян способны в сутки синтезировать 40 кг белков, бык такой же массы — 0,5-1,5 кг, а дрожжевые клетки массой 500 кг – до 1,5 т белков [3].
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.      Субстраты для культивирования микроорганизмов
 
В качестве источников вещества и энергии микроорганизмы используют самые разнообразные субстраты - нормальные парафины и дистилляты нефти, природный газ, спирты, растительные гидролизаты и отходы промышленных предприятий.
Для выращивания микроорганизмов с целью получения белка хорошо бы иметь богатый углеродом, но дешевый субстрат. Этому требованию вполне отвечают нормальные (неразветвленные) парафины нефти. Выход биомассы может достигать при их использовании до 100% от массы субстрата. Качество продукта зависит от степени чистоты парафинов. При использовании парафинов достаточной степени очистки, полученная дрожжевая масса может успешно применяться в качестве дополнительного источника белка в рационах животных. Первый в мире крупный завод кормовых дрожжей мощностью 70 000 т. в год. был пущен в 1973 г. в СССР. В качестве сырья на нем использовали выделенные из нефти н-алканы и несколько видов дрожжей, способных к быстрому росту на углеводородах: Candida maltosa, Candida guilliermondii, Candida lipolytica. В дальнейшем именно отходы от переработки нефти служили главным сырьем для производства дрожжевого белка, которое быстро росло и к середине 80-х гг. превысило 1 млн. т. в год, причем в СССР кормового белка получали вдвое больше, чем во всех остальных странах мира, вместе взятых.  Однако в последующем масштабы производства дрожжевого белка на углеводородах нефти резко сократились. Это произошло как в результате экономического кризиса 90-х гг., так и из-за целого ряда специфических проблем, с которыми связано это производство. Одна из них - необходимость очистки готового кормового продукта от остатков нефти, имеющих канцерогенные свойства.
В нашей стране мало районов, пригодных для выращивания сои, являющейся основным источником белковых добавок. Поэтому налажено крупнотоннажное производство кормовых дрожжей на n-парафинах. Действует несколько заводов мощностью от 70 до 240 тыс. тонн в год. Сырьем служат жидкие очищенные парафины.
Одним из перспективных источников углерода для культивирования продуцентов белка высокого качества считается метиловый спирт. Его можно получать методом микробного синтеза на таких субстратах, как древесина, солома, городские отходы. Использование метанола в качестве субстрата затруднено из-за его химической структуры: молекула метанола содержит один атом углерода, тогда как синтез большинства органических соединений осуществляется через двухуглеродные молекулы. На метаноле как на единственном источнике углерода и энергии способны расти около 25 видов дрожжей, в том числе Pichia polymorpha, Pichia anomala, Yarrowia lipolytica. Наилучшими продуцентами на этом субстрате считаются бактерии, потому что они могут расти на метаноле с добавлением минеральных солей. Процессы получения белка на метаноле достаточно экономичны. По данным концерна Ай-Си-Ай (Великобритания), себестоимость продукта, производимого на метаноле, на 10-15% ниже, чем при аналогичном производстве, базирующемся на основе высокоочищенных n-парафинов. Высокобелковые продукты из метанола получают фирмы ряда развитых стран мира: Великобритании, Швеции, Германии, США, Италии. Продуцентами белка служат бактерии рода Methylomonas. Выращивание на метаноле метилотрофных бактерий, таких как Methylophilus methylotrophus, выгодно, так как они используют одноуглеродные соединения более эффективно. При росте на метаноле бактерии дают больше биомассы, чем дрожжи.
Использование этанола как субстрата снимает проблему очистки биомассы от аномальных продуктов обмена с нечетным числом углеродных атомов. Стоимость такого производства несколько выше. Биомассу на основе этанола производят в Чехословакии, Испании, Германии, Японии, США.
В США, Японии, Канаде, ФРГ, Великобритании разработаны технологические процессы получения белка на природном газе. Выход биомассы в этом случае может составлять 66% от массы субстрата. В разработанном в Великобритании процессе используется смешанная культура: бактерии Methylomonas, усваивающие метан, Hypomicrobium и Pseudomonas, усваивающие метанол, и два вида неметилотрофных бактерий. Культура характеризуется высокой скоростью роста и продуктивностью. Главные достоинства метана (кстати сказать, основного компонента природного газа) - доступность, относительно низкая стоимость, высокая эффективность преобразования в биомассу метаноокисляющими микроорганизмами, значительное содержание в биомассе белка, сбалансированного по аминокислотному составу. Бактерии, растущие на метане хорошо переносят кислую среду и высокие температуры, в связи с чем устойчивы к инфекциям.
Субстратом для микробного синтеза может быть и минеральный углерод - углекислый газ. Окисленный углерод в данном случае с успехом восстанавливается микроводорослями при помощи солнечной энергии и водородоокисляющими бактериями при помощи водорода. На корм скоту используют суспензию водорослей. Для работы установок по выращиванию водорослей необходимы стабильные климатические условия - постоянные температуры воздуха и интенсивность солнечного света [1].
Наиболее перспективно получение белка с помощью водородоокисляющих бактерий, которые развиваются за счет окисления водорода кислородом воздуха. Энергия, высвобождающаяся в этом процессе, идет на усвоение углекислого газа. Для получения биомассы используются, как правило, бактерии рода Hydrogenomonas. Первоначально интерес к ним возник при разработке замкнутых систем жизнеобеспечения, а затем их стали изучать с точки зрения использования в качестве продуцентов высококачественного белка. В институте микробиологии Геттингенского университета (Германия) разработан способ культивирования водородоокисляющих бактерий, при котором можно получать 20 г сухого вещества на 1 литр суспензии клеток. Возможно, в будущем эти бактерии станут основным источником пищевых микробных белков.
Исключительно доступным и достаточно дешевым источником углеводов для производства микробного белка является растительная биомасса. Любое растение содержит разнообразные сахара. Целлюлоза - полисахарид, состоящий из молекул глюкозы. Гемицеллюлоза состоит из остатков арабинозы, галактозы, маннозы, фруктозы. Проблема в том, что полисахариды древесины связаны жесткими оксифенилпропановыми звеньями лигнина - полимера, почти не поддающегося разрушению. Поэтому гидролиз древесины происходит только в присутствии катализатора - минеральной кислоты и при высоких температурах. При этом образуются моносахара - гексозы и пентозы. На жидкой, содержащей сахара, фракции гидролизата выращивают дрожжи. При кислотном гидролизе древесины образуется ряд побочных продуктов (фурфурол, меланины), а из-за высоких температур может произойти карамелизация сахаров. Эти вещества препятствуют нормальному росту дрожжей, их отделяют от гидролизата и по возможности используют. В качестве продуцентов используют штаммы Candida scotti и C.tropicalis.
Наиболее крупным производителем сырья для гидролизной промышленности являются деревообрабатывающие предприятия, отходы которых достигают ежегодно десятки миллионов тонн. К сожалению, нерационально или не используются вообще отходы производства лубяных волокон (из льна и конопли), картофелекрахмального производства, пивоваренной, плодоовощной, консервной промышленности, свекловичный жом.
Особого внимания заслуживают способы прямой биоконверсии продуктов фотосинтеза и их производных в белок с помощью грибов. Эти организмы благодаря наличию мощных ферментных систем способны утилизировать сложные растительные субстраты без предварительной обработки. Исследования условий биоконверсии растительных субстратов в микробный белок активно ведутся в США, Канаде, Индии, Финляндии, Швеции, Великобритании, в нашей стране и других странах мира. Однако в литературе сведения о широкомасштабном производстве белков микробного происхождения немногочисленны. Наиболее известным и доведенным до стадии промышленной реализации является процесс "Ватерлоо", разработанный в университете Ватерлоо в Канаде. Это процесс, основанный на выращивании целлюлозоразрушающих грибов Chaetomium cellulolyticum, можно осуществлять как в глубинной культуре, так и поверхностным методом. Содержание белка в конечном продукте (высушенном грибном мицелии) составляет 45%. Финская фирма "Тампелла" разработала технологию и организовала производство белкового кормового продукта "Пекило" на отходах целлюлозно-бумажного производства. Продукт содержит до 60% протеина с хорошим аминокислотным профилем и значительное количество витаминов группы В.
В большинстве стран - производителей молока традиционным способом утилизации сыворотки является скармливание её животным. Степень конверсии белка сыворотки в белок животного весьма невысока (для выработки 1 кг животного белка необходимо 1700 кг сыворотки). В последние 10-15 лет из сыворотки методом ультрафильтрации выделяют белки высокого качества, на основе которых делают заменители сухого обезжиренного молока и другие продукты. Концентраты можно использовать как пищевые добавки и компоненты детского питания. Из сыворотки производится и молочный сахар - лактоза, применяемая в пищевой и медицинской промышленности. При всем при этом объем промышленной переработки сыворотки составляет 50-60% от её общего производства. Следовательно, налицо большие потери ценнейшего молочного белка и лактозы. Более того, возникает проблема утилизации отходов, так как процесс естественного разложения сыворотки происходит крайне медленно. Лактоза молочной сыворотки может служить источником энергии для многих видов микроорганизмов, сырьем для производства продуктов микробного синтеза (органических кислот, ферментов, спиртов, витаминов) и белковой биомассы. Из всех известных микроорганизмов самым высоким коэффициентом конверсии белка сыворотки в микробный белок обладают дрожжи. Способность к ассимиляции лактозы имеется примерно у 20% всех известных видов дрожжей. Гораздо реже встречаются дрожжи, сбраживающие лактозу. Активный катаболизм лактозы особенно характерен для дрожжей из рода Kluyveromyces. Эти дрожжи можно использовать для получения на молочной сыворотке кормового белка, этанола, препаратов ?-глюкозидазы [1].
Впервые дрожжи на молочной сыворотке стали выращивать в Германии. В качестве продуцентов применяли различные штаммы сахаромицетов. Разработаны способы получения микробных продуктов, основанные на использовании лактозы как монокультурой, так и смесью дрожжей и бактерий. В настоящее время в качестве продуцентов используют дрожжи родов Candida, Trichosporon, Torulopsis. Молочная сыворотка с выросшими в ней дрожжами по биологической ценности значительно превосходит исходное сырье и её можно использовать в качестве заменителя молока [4].
 


3.      Основные продуценты микробного белка
 
В современных биотехнологических процессах, основанных на использовании микроорганизмов, продуцентами белка служат дрожжи, бактерии, одноклеточные водоросли и микроскопические грибы.
 
3.1    Кормовые дрожжи
Дрожжи впервые стали использовать как источник белка для человека и животных в Германии во время первой мировой войны, когда была разработана промышленная технология культивирования пивных дрожжей (Saccharomyces cerevisiae), предназначенных для добавления в продукты питания. В нашей стране дрожжи выращивали на гидролизатах из отходов древесины и другого целлюлозосодержащего растительного сырья, которые при гидролизе образуют легкоусвояемые для микроорганизмов формы углеводов. В настоящее время нашей биотехнологической промышленностью на основе гидролиза растительного сырья производится значительный объем кормовых дрожжей для сельского хозяйства.
В качестве исходного сырья при такой технологии получения кормового белка обычно используются отходы целлюлозной и деревообрабатывающей промышленности, солома, хлопковая шелуха, корзинки подсолнечника, льняная костра, стержни кукурузных початков, свекловичная меласса, картофельная мезга, виноградные выжимки, пивная дробина, верховой малоразложившийся торф, барда спиртовых производств, отходы кондитерской и молочной промышленности.
Измельченное растительное сырье, содержащее большое количество клетчатки, гемицеллюлоз, пентозанов, подвергается кислотному гидролизу при повышенном давлении и температуре, в результате чего 60-65 % содержащихся в них полисахаридов гидролизуются до моносахаридов. Полученный гидролизат отделяют от лигнина, избыток кислоты, применяемый для гидролиза, нейтрализуют известковым молоком или аммиачной водой. После охлаждения и отстаивания в гидролизат добавляют минеральные соли, витамины и другие вещества, необходимые для жизнедеятельности микроорганизмов. Полученная таким образом питательная среда подается в ферментерный цех, где осуществляется выращивание дрожжей.
Для культивирования на гидролизатах растительных отходов наиболее эффективны дрожжи родов Candida, Torulopsis, Saccharomyces, которые способны использовать в качестве источника углерода гексозы, пентозы и органические кислоты. При оптимальных условиях из 1 т отходов хвойной древесины можно получить 200 кг кормовых дрожжей [1].
Для получения кормовых дрожжей применяется технология их глубинного выращивания в специальных аппаратах – ферментерах, в которых обеспечивается режим постоянного перемешивания суспензии микробных клеток в жидкой питательной среде и оптимальные условия аэрации. В целях поддержания заданного температурного режима в конструкции ферментера предусматривается система отвода избыточного тепла. Рабочий цикл выращивания культуры дрожжей длится около 20 ч. По окончании рабочего цикла культуральная жидкость вместе с суспендированными в ней клетками дрожжей выводится из ферментера, а в него вновь подается питательный субстрат и культура дрожжевых клеток для выращивания.
Выведенная из ферментера суспензия микробных клеток далее подается на флотационную установку, с помощью которой производится отделение биомассы дрожжей от культуральной жидкости. В процессе флотации  происходит вспенивание суспензии, при этом микробные клетки всплывают на поверхность вместе с пеной, которая отделяется от жидкой фазы декантацией. После отстаивания дрожжевая масса концентрируется с помощью сепаратора. Для достижения лучшей перевариваемости дрожжей в организме животных проводится специальная обработка микробных клеток (механическая, ультразвуковая, термическая, ферментативная), обеспечивающая разрушение их клеточных оболочек. Затем дрожжевая масса упаривается до необходимой концентрации и высушивается, влажность готового продукта не должна превышать 8-10 %.
В сухой дрожжевой массе содержится 40-60 % сырого белка, 25-30 % усвояемых углеводов, 3-5 % сырого жира,  6-7 % клетчатки и зольных веществ, большое количество витаминов (до 50 мг%).
При выращивании микроорганизмов на н-парафинах нефти в приготовленную из них питательную среду добавляют макро- и микроэлементы, необходимые витамины и аминокислоты, а в качестве источника азота аммиачную воду. В процессе культивирования дрожжей в ферментере поддерживается оптимальный температурный режим и режим аэрации. Наиболее эффективны для выращивания на н-парафинах нефти отселектированные штаммы дрожжей Candida guilliermondii. Выделение и сушка дрожжевой массы проводится примерно по такой же технологии, как и в гидролизном производстве. Высушенная дрожжевая масса гранулируется и используется как белково-витаминный  концентрат (БВК) для кормления сельскохозяйственных животных, содержащий до 50-60 % белковых веществ.
Хороший субстрат для выращивания кормовых дрожжей  - молочная сыворотка. Для выделения из молочной сыворотки белков разработана эффективная технология с применением метода ультрафильтрации низкомолекулярных веществ через мембраны. Получаемые таким способом белки используются для приготовления сухого обезжиренного молока или в качестве пищевой белковой добавки. Остающиеся после отделения белков жидкие отходы (пермеат), содержащие лактозу, могут быть затем переработаны путем культивирования дрожжей в обогащенные белками кормовые продукты [3].
Дрожжевая масса, полученная после культивирования дрожжей на низших спиртах (метаноле и этаноле), отличается высоким содержанием  белков (56-62 % от сухой массы) и в ней меньше содержится вредных примесей, чем в кормовых дрожжах, выращенных на н-парафинах нефти.
Как показывают опыты по изучению питательных свойств кормовых дрожжей, они достаточно хорошо перевариваются в организме животных (перевариваемость белков 80-90 %), по сумме незаменимых аминокислот близки к эталону ФАО, а по содержанию в белках лизина, треонина, валина и лейцина существенно превышают эталон ФАО. Вместе с тем белки дрожжей частично не сбалансированы по метионину и в них мало содержится других серосодержащих аминокислот.
По сравнению с растительными источниками белков кормовые дрожжи имеют повышенное содержание нуклеиновых кислот (4-6 % от сухой массы), которые в такой концентрации оказывают вредное воздействие на организм.
Кормовые дрожжи, культивируемые на питательной среде из н-парафинах нефти, могут содержать многие вредные примеси – производные бензола, D-аминокислоты, аномальные липиды, различные токсины и канцерогенные вещества, поэтому их подвергают специальной очистке.
В настоящее время ведется работа по совершенствованию производственной технологии. Кроме того, важное значение имеет создание высокопродуктивных штаммов дрожжей, способных накапливать много белка, быстро наращивать биомассу и эффективно использовать субстрат для своей жизнедеятельности.
Наряду с использованием дрожжевых белков в качестве кормовой добавки при балансировании рационов сельскохозяйственных животных ставится задача сделать эти белки пригодными для питания человека.
При переработке в пищевой белок биомассу дрожжей тщательно очищают. С этой целью клеточные оболочки дрожжевых клеток разрушают с помощью механической, щелочной, кислотной или ферментативной обработки и затем экстрагируют гомогенную дрожжевую массу органическим растворителем. После очистки от органических и минеральных примесей полученный дрожжевой продукт обрабатывают щелочным раствором для растворения белков, затем белковый раствор отделяют от оставшейся массы дрожжей и направляют на диализ. В процессе диализа из белкового раствора удаляются низкомолекулярные примеси. Очищенные диализом белки осаждают, высушивают и полученную белковую массу используют в качестве добавок в различные пищевые продукты: сосиски, студни, паштеты, мясные и кондитерские начинки [3].
Белки дрожжей находят также применение при получении искусственного мяса,  гидролизаты белков используют в качестве вкусовых приправ, для приготовления медицинских препаратов и лечебного питания.
 
3.2 Бактерии
Наряду с получением кормовых дрожжей важное значение для кормопроизводства имеют также бактериальные белковые концентраты с содержанием сырого белка 60-80 % от сухой массы. Известно более 30 видов бактерий, которые могут быть использованы в качестве источников полноценного кормового белка. Бактерии способны наращивать биомассу в несколько раз быстрее дрожжевых клеток и в белке бактерий содержится значительно больше серосодержащих аминокислот, вследствие чего он имеет более высокую биологическую ценность по сравнению с белком дрожжей. Источником углерода для бактерий могут служить различные газообразные продукты, низшие спирты, водород.
При использовании в качестве сырья газообразных продуктов, основным компонентом которых является метан, питательную смесь под давлением подают в специальный ферментер струйного типа.
Чаще всего на газовых питательных средах выращивают бактерии рода  Methylococcus ,способные при оптимальных условиях утилизировать до 80-90 % подаваемого в ферментер метана [4].
По окончании ферментации клетки бактерий осаждают и отделяют от питательной среды на сепараторе. Полученную бактериальную массу затем подвергают механической или ультразвуковой обработке с целью разрушения клеточных оболочек, после чего высушивают и используют для приготовления кормовых белковых концентратов.
Высокой интенсивностью синтеза белков характеризуются водород окисляющие бактерии, способные накапливать в своих клетках до 80 % сырого белка в расчете на сухое вещество. Эти бактерии используют энергию окисления водорода для утилизации углекислоты, а некоторые штаммы и для усвоения атмосферного азота. Для культивирования водород окисляющих бактерий в составе газовой среды обычно содержится 70-80 % водорода, 20-30 % кислорода и 3-5 % углекислоты. Высокую эффективность при выращивании на такой газовой среде имеют бактерии родов Pseudomonas, Alcaligenes, Achromobaster, Corinecteriu.
Обычно кормовой белок бактериального происхождения добавляют в комбикорма в  количестве 2,5-7,5 % от белка рациона. Основное препятствие, которое не позволяет его использовать в большей концентрации,-повышенное содержание нуклеиновых кислот (10-25 %). Кроме того, в бактериальной массе наряду с полезными компонентами в значительном количестве синтезируются трудно усвояемые формы липидов; сложнее и дороже методы выделения и очистки бактериальных белковых препаратов.
 
3.3  Одноклеточные водоросли
В России и ряде других стран для производства кормового белка используются одноклеточные водоросли Chlorella и Scenedesmus, а так же сине-зеленые водоросли из рода Spirulina, которые способны синтезировать белки и другие органические вещества из углекислоты, воды и минеральных веществ за счет усвоения энергии солнечного света. Для их выращивания необходимо обеспечивать определенный режим освещения и температуры, а так же требуются большие объемы воды.
По интенсивности накопления биомассы водоросли, хотя и уступают кормовым дрожжам и бактериям, значительно превосходят сельскохозяйственные растения. При их выращивании в культиваторах открытого типа с 1 га водной поверхности можно получать до 70 т сухой биомассы в год, тогда как при возделывании пшеницы – 3-4 т, риса – 5т, сои – 6 т, кукурузы – 7т.
Содержание белков в клетках хлореллы и сценедемус составляет 45-55 % в расчете на сухую массу, а в клетках спирулины достигает 60-65 %. Белки водорослей хорошо сбалансированы по содержанию незаменимых аминокислот, недостаточно содержится лишь метионина. Наряду с высоким содержанием белковых веществ в клетках водорослей довольно много синтезируется полиненасыщенных жирных кислот и провитамина А – каротина.  Каротина в биомассе водорослей в 7-9 раз больше, чем в травяной муке из люцерны, отличающейся наиболее высоким содержанием этого провитамина среди кормовых трав.  Содержание нуклеиновых кислот в одноклеточных водорослях значительно ниже (4-6 %), чем у бактерий,  однако несколько выше по сравнению с растительными источниками белка (1-2 %) [1].
Технология получения белковой массы из клеток водорослей включает выращивание промышленной культуры в культиваторах открытого или закрытого типа, отделение водорослей от массы воды, приготовление товарного продукта в виде суспензии, сухого порошка или пастообразной массы. Процесс отделения клеток водорослей от массы воды энергоемкий, так как необходимо перерабатывать большие объемы жидкости.
Вначале отстаивают клеточную суспензию, затем клетки водорослей отделяют от воды декантацией. Для ускорения осаждения клеток часто применяется метод химический флоккуляции, вызывающий быструю коагуляцию частиц. После осаждения клеточной биомассы ее пропускают через сепаратор, в результате чего происходит концентрирование суспензии до необходимой концентрации. Если требуется получить пастообразный препарат, то полученную белковую массу высушивают. Для улучшения переваримости биомассы клеток хлореллы и сценедемус проводится их обработка с целью разрушения клеточных оболочек.
В нашей стране наиболее распространено выращивание хлореллы, которая применяется  для кормления сельскохозяйственных животных в виде суспензии или сухого порошка. Суточная норма суспензии хлореллы при кормлении молодняка крупного рогатого скота 3-6 л, взрослых животных 8-10 л. При добавлении в корм жвачных животных муки хлореллы допускается замена 50 %  растительного белка белком водоросли.
Важное значение имеет выращивание водорослей на стоках промышленных предприятий, тепловых электростанций, животноводческих комплексов, так как в этих случаях наряду с получением кормового белка одновременно решаются проблемы, связанные с защитой окружающей среды. Так, например, выращивание культуры сценедемус или хлореллы на стоках животноводческих комплексов в течение 15 сут позволяет почти полностью очистить их от органических веществ, исчезает запах и цвет.  При культивировании  водорослей на промышленных стоках используется отводимый с этих объектов избыток тепла, а также утилизируется углекислота, образуемая как побочный продукт технологических процессов и в результате сжигания различных отходов.
В связи с тем, что биомасса водорослей рода Spirulina легко переваривается ферментами желудочного сока и характеризуется высоким содержанием белков (до 70 % сухой массы), хорошо сбалансированных по аминокислотному составу, она в ряде стран используется для приготовления продуктов питания, главным образом кондитерских изделий, обогащенных белком [2].
3.4  Микроскопические грибы
Ценным источником хорошо сбалансированных по аминокислотному составу белков являются клетки мицелия многих микроскопических грибов. По своим питательным свойствам белки грибов приближаются к белкам сои и мяса, вследствие чего могут использоваться не только для приготовления кормовых концентратов, но и как добавка в пищу человека. Сырьем для промышленного выращивания  микроскопических грибов обычно служат растительные отходы, содержащие клетчатку, гемицеллюлозы, лигнин. При этом одновременно решаются две важные задачи-  получение белковой массы и утилизация отходов растениеводства, деревообрабатывающей и целлюлозно-бумажной промышленности, которые могут быть источниками загрязнения окружающей среды.
Особенно важно найти активные штаммы микроорганизмов, способные утилизировать углерод лигнина, обладающего высокой устойчивостью к разложению микрофлорой. В природе лигнин разлагается лишь грибами коричневой и белой гнили родов Stropharia, Pleurotis, Abortiporus, Coriolus и др. В настоящее время в процессе исследований отобраны атоксичные быстрорастущие штаммы мезо- и термофильных грибов для промышленного культив
и т.д.................


Перейти к полному тексту работы


Скачать работу с онлайн повышением уникальности до 90% по antiplagiat.ru, etxt.ru или advego.ru


Смотреть полный текст работы бесплатно


Смотреть похожие работы


* Примечание. Уникальность работы указана на дату публикации, текущее значение может отличаться от указанного.